Spelling suggestions: "subject:"heat anda mass btransfer coperations"" "subject:"heat anda mass btransfer cooperations""
1 |
BASO4 NANOCOMPOSITE COLOR COOLING PAINT AND BIO-INSPIRED COOLING METHODPeiyan Yao (9029216) 12 October 2021 (has links)
<p>Radiative cooling is an approach that utilizes the material
reflectance in solar spectrum to reflect solar irradiation and emit the energy
to deep space (2.7K) through the transparent portion in atmosphere (8-13μm). Therefore, radiative
cooling is a passive cooling method that can generate a large reduction in energy
consumption in the cooling sector. Scientists have been researching on the best
solution for passive radiative cooling, including the utilization of multi-layer
techniques with a metallic base layer. However, the current solutions are
usually not cost effective and thus limited in the commercial applications. We
initially started with the experiment on single-layer cooling paints embedded
with TiO<sub>2 </sub>nanoparticles, and we were able to achieve a partial
daytime radiative cooling effect of 60Wm<sup>-2</sup> Built upon our lab’s success
of full-daytime sub-ambient cooling based on BaSO<sub>4</sub>-acrylic paints,
we experiment with colored cooling paints based on BaSO<sub>4</sub> nanoparticles
instead of TiO<sub>2</sub> nanoparticles. Our results show much enhanced solar
reflectance while matching the color, indicating the potential for colored cooling
paints, although outdoor tests have not shown significant temperature drop compared
to commercial colored paints yet. At the same time, we also explore creatures
with shells in nature for possible solutions. Seashells are collected and the
microstructures and radiative properties are characterized. The results provide
insights into bio-inspired radiative cooling solutions.</p>
|
2 |
Electric Infrared Die heating for Aluminum High Pressure Die CastingCarl Kuang Yu Shi (9721637) 15 December 2020 (has links)
Casting is a substantial part of modern manufacturing and production, typically used in
the production of aluminum alloys. The high pressure die casting process is extremely
suitable for mass production. Due to the high volume, wasted time and resources during
the production cycle become more significant. Aluminum die castings require the die to
be at elevated temperatures to produce acceptable castings. When the inner surfaces of a
die are cold, the outer shell of the casting will cool too rapidly, and solidification of the
outer shell occurs before the aluminum has time to uniformly fill the cavities. Therefore,
without the die being within the proper temperature range, the castings produced will have
significant issues in porosity and casting incompleteness. Furthermore, stresses are
introduced to the casting surfaces when warm-up shots are used to raise the temperature
prior to production. In the present work, research is conducted on designing a heating
method for a casting die used in the manufacturing of an automotive transmission
intermediate plate. An electric, short wave infrared heating system is simple and effective
for the purpose. By utilizing an electric infrared heater in combination with a flat mirror
reflector, the aluminum high pressure die casting die was heated to 300 ◦C surface
temperature within 30 minutes. Further research can be done to optimize heat flux
distribution and minimize energy consumption.
|
3 |
Thermodynamic analysis of solar desalination technology in agricultural greenhousesUcgul, Mustafa January 2010 (has links)
Water is a vital element of agriculture. Almost 75% of the world's water resources are used for farm irrigation. Using greenhouses in agriculture provides a good environment for plant growth and reduces water consumption. Desalination to obtain freshwater from seawater or brackish water has been used in the arid costal regions and areas that have encountered water shortages. Solar desalination systems integrated into greenhouses have been considered for fresh water production to satisfy their water demand. Two main types of greenhouse integrated desalination systems are used, namely, solar stills and greenhouse-integrated humidification-dehumidification type solar systems. The main objective of this project is to carry out a thermodynamic analysis and a comparison of solar stills and humidification-dehumidification type desalination units. The basic principles, components, types, advantages and disadvantages of solar stills and humidification-dehumidification type greenhouse integrated desalination systems were investigated in detail. A conventional single basin type solar still that includes a basin and a symmetrical tilted condensing cover (greenhouse roof), and a humidification- dehumidification desalination unit that consists of two evaporators and one condenser were selected for detailed analysis. In order to carry out the thermal analysis, some important data such as plant transpiration and evaporation, solar radiation and indoor conditions of the greenhouse were determined. The thermal analysis was based on tomato production. Typical year ambient air temperature, relative humidity, and wind velocity values were taken from TRNSYS 16 for Adelaide conditions. In order to provide a good environment for the tomato crops, the internal conditions of the greenhouse were selected in the range 15-29oC temperature and 60-80% relative humidity. Detailed mathematical thermal models of both conventional solar stills and the new humidification-dehumidification type systems were simulated and the fresh water production of both systems was evaluated by means of MATLAB 7.8. The results were compared with previous experimental results. The results demonstrated that even if the whole roof area is used, the required fresh water supply cannot be produced in the months of May, June and July by the simple solar still system, whereas adequate amounts of fresh water can be produced throughout the year by means of humidification-dehumidification type system. On the other hand, the annual water production of the simple solar still system and humidification-dehumidification type system were determined as 308.5 and 260 m3/year respectively. The thesis also considers the option of water storage for providing water requirement of the greenhouse plants. The parameters that affect the fresh water requirement of the both systems were also considered and their impact evaluated. The effects of the desalination system on the internal environment of the greenhouse were also considered. It was revealed from the results that the use of the solar still system during the period from April to October causes unsuitable greenhouse conditions for the greenhouse crops whilst appropriate conditions for the greenhouse crops were achieved throughout the year in the case of the humidification-dehumidification type system. On these and other grounds, the humidification-dehumidification type system was found more suitable for the given greenhouse and climatic conditions. / Thesis (MEng(MechanicalEngineering)--University of South Australia, 2010
|
4 |
Variable Thermal Resistor Based on Compressible FoamsWeizhi Liao (9029120) 12 October 2021 (has links)
With the world’s increasing usage of electronic devices such as mobile devices and batteries, improving the reliability and performance of these devices has become more and more important. Besides the common overheating issues, low-temperature environments can also cause performance degradation or failure to these devices. Research on thermal switches and thermal regulators aims to improve the thermal management of electronic devices across a range of operating conditions. However, continuous tuning of thermal transport with all-solid-state systems is still challenging. The primary purpose of this work is to propose and demonstrate compressible foams as novel variable thermal resistors and thermal regulators to control device temperature under various input heat flux and ambient temperature. The graphene/PDMS foam is first tested in this work to demonstrate promising performance as a thermal regulator, with continuous tuning capability and a system switching ratio over ~4. Then, the dependence of the thermal conductivity of polymer foams during compression is studied, where the thermal conductivity is measured using a customized system based on an infrared microscope. Unexpectedly, the thermal conductivity decreases slightly at a compression level of more than 10x, in contrast to common theories that the thermal conductivity would increase with the mass density. A simple “spring model” is proposed as a limit where the ligaments do not build contacts during compression. Our results now fall in between the “spring model” and other common theories and can be explained. To gain further insights, a molecular dynamic simulation is performed on a graphene random nanofoam on the nanoscale. The result also shows that the effective thermal conductivity along the compression direction is not sensitive to the mass density, consistent with our experimental data on the macroscopic scale. This work provides useful insights into dynamic thermal management of electronic devices.
|
5 |
Large-Eddy Simulation And RANS Studies Of The Flow And Heat Transfer In A U-Duct With Trapezoidal Cross SectionKenny Sy Hu (5929775) 03 January 2019 (has links)
The thermal efficiency of gas turbines increases with the temperature of the gas entering its turbine component. To enable high inlet temperatures, even those that far exceed the melting point of the turbine materials, the turbine must be cooled. One way is by internal cooling, where cooler air passes through U-ducts embedded inside turbine vanes and blades. Since the flow and heat transfer in these ducts are highly complicated, computational fluid dynamics (CFD) based on RANS have been used extensively to explore and assess design concepts. However, RANS have been found to be unreliable – giving accurate results for some designs but not for others. In this study, large-eddy simulations (LES) were performed for a U-duct with a trapezoidal cross section to assess four widely used RANS turbulence models: realizable k-ε (k-ε), shear-stress transport (SST), Reynolds stress model with linear pressure strain (RSM-LPS), and the seven-equation stress-omega full Reynolds stress model (RSM).<div><br></div><div>When examining the capability of steady RANS, two versions of the U-duct were examined, one with a staggered array of pin fins and one without pin fins. Results obtained for the heat-transfer coefficient (HTC) were compared with experimental measurements. The maximum relative error in the predicted “averaged” HTC was found to be 50% for k-ε and RSM-LPS, 20% for SST, and 30% for RSM-τω when there are no pin fins and 25% for k-ε, 12% for the SST and RSM-τω when there are pin fins. When there are no pin fins, all RANS models predicted a large separated flow region downstream of the turn, which the experiment does show to exist. Thus, all models predicted local distributions poorly. When there were pin fins, they behaved like guide vanes in turning the flow and confined the separation around the turn. For this configuration, all RANS models predicted reasonably well.<br></div><div><br></div><div>To understand why RANS cannot predict the HTC in the U-duct after the turn when there are no pin fins, LES were performed. To ensure that the LES is benchmark quality, verification and validation were performed via LES of a straight duct with square cross section where data from experiments and direct numerical simulation (DNS) are available. To ensure correct inflow boundary condition is provided for the U-duct, a concurrent LES is performed of a straight duct with the same trapezoidal cross section and flow conditions as the U-duct. Results obtained for the U-duct show RANS models to be inadequate in predicting the separation due to their inability to predict the unsteady separation about the tip of the turn. To investigate the limitations of the RANS models, LES results were generated for the turbulent kinetic energy, Reynolds-stresses, pressure-strain rate, turbulent diffusion, pressure diffusion, turbulent transport, and velocity-temperature correlations with focus on understanding their behavior induced by the turn region of the U-duct. As expected, the Boussinesq assumption was found to be incorrect, which led to incorrect predictions of Reynolds stresses. For RSM-τω, the modeling of the pressure-strain rate was found to match LES data well, but huge error was found on modeling the turbulent diffusion. This huge error indicates that the two terms in the turbulent diffusion – pressure diffusion and turbulent transport – should be modeled separately. Since the turbulent transport was found to be ignorable, the focus should be on modeling the pressure diffusion. On the velocity-temperature correlations, the existing eddy-diffusivity model was found to be over simplified if there is unsteady separation with shedding. The generated LES data could be used to provide the guidance for a better model.<br></div>
|
6 |
Thermal Metrology for Waste Heat Systems: Thermoelectrics to Phase Change MaterialsCollier S Miers (6640934) 25 June 2020 (has links)
This dissertation presents the development of two unique measurement platforms. <br><br>The first system is a high-temperature Z-Meter. This system is designed to simultaneously measure the electrical resistivity, Seebeck coefficient, and thermal conductivity of a thermoelectric sample to accurately determine the figure of merit, ZT, for that material. It is designed to operated at sample temperatures of up to 1000C, and with temperature gradients on the order of 500C across the sample. This system also provides <i>in situ</i> load monitoring for contact pressure and allows the user to adjust loading during the experiment. <br><br>The second part of this dissertation focuses on the development of enhanced composite phase change material (PCM) heat sinks to improve passive thermal management in mobile electronics. We present a new design for a composite PCM heat sink and utilize off-the-shelf PCMs to show characterize the performance. In order to accurately investigate the performance enhancement of these designs, we develop a turn-key thermal management evaluation platform to allow the user complete control over the power profiles and cycling applied to the test chip, as well as providing <i>in situ</i> temperature monitoring within the chip. The proposed package designs show significant improvement in the length of time extended before reaching the cut-off temperature within the heatfluxes tested, 6 - 14 W/cm^2, and accomplish this while weighing less than the equivalent sensible heat storage design.<br><br><br><br>
|
7 |
Experimental Investigation and Modeling of Key Design Parameters in Flow Boiling and CondensationLucas E O'Neill (6944528) 15 August 2019 (has links)
<div>In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, pre-heater, condenser, etc.) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information. Conclusions from this analysis are used to isolate instabilities present within the system due to physical interplay between thermodynamic and hydrodynamic effects. Parametric analysis is undertaken to better understand the conditions under which these instabilities form and their impact on system performance. Several prior stability maps are presented, with new stability maps provided to better address contextual trends discovered in the present study.</div><div>Further, this study utilizes experimental results for vertical upflow boiling of FC-72 in a rectangular channel with finite inlet quality to investigate Density Wave Oscillations (DWOs) and assess their potential impact on design of two-phase systems for future space missions. High-speed flow visualization image sequences are presented and used to directly relate the cyclical passage of High and Low Density Fronts (HDFs and LDFs) to dominant low-frequency oscillations present in transient pressure signals commonly attributed to DWOs. A methodology is presented to determine frequency and amplitude of DWO induced pressure oscillations, which are then plotted for a wide range of relevant operating conditions. Mass velocity (flow inertia) is seen to be the dominant parameter influencing frequency and amplitude of DWOs. Amplitude of pressure oscillations is at most 7% of the time-averaged pressure level for current operating conditions, meaning there is little risk to space missions. Reconstruction of experimental pressure signals using a waveform defined by frequency and amplitude of DWO induced pressure fluctuations is seen to have only moderate agreement with the original signal due to the oversimplifications of treating DWO induced fluctuations as perfectly sinusoidal in nature, assuming they occur at a constant frequency value, and neglecting other transient flow features. This approach is nonetheless determined to have potential value for use as a boundary condition to introduce DWOs in two-phase flow simulations should a model be capable of accurately predicting frequency and amplitude of oscillation.</div><div>Additionally, this study presents a new mechanistic model for Density Wave Oscillations (DWOs) in vertical upflow boiling using conclusions drawn from analysis of flow visualization images and transient experimental results as a basis from which to begin modeling. Counter to many prior studies attributing DWOs to feedback effects between flow rate, pressure drop, and flow enthalpy causing oscillations in position of the bulk boiling boundary, the present instability mode stems primarily from body force acting on liquid and vapor phases in a separated flow regime leading to liquid accumulation in the near-inlet region of the test section, which eventually departs and moves along the channel, acting to re-wet liquid film along the channel walls and re-establish annular, co-current flow. This process was modeled by dividing the test section into three distinct control volumes and solving transient conservation equations for each, yielding predictions of frequencies at which this process occurs as well as amplitude of associated pressure oscillations. Values for these parameters were validated against an experimental database of 236 FC-72 points and show the model provides good predictive accuracy and capably captures the influence of parametric changes to operating conditions.</div><div>Also, this study shows analysis of pressure signals in condensing systems reveal the presence of relevant oscillatory phenomena during flow condensation as well, which may impact performance in applications concerned with precise system control. Towards this end, the present study presents results for oscillatory behavior observed in pressure measurements during flow condensation of FC-72 in a smooth circular tube in vertical upflow, vertical downflow, and horizontal flow orientations. Dynamic behavior observed within the test section is determined to be independent of other components within the flow loop, allowing it to be isolated and interpreted as resulting from physical aspects of two-phase flow with condensation. The presence of a peak oscillatory mode (one of significantly larger amplitude than any others present) is seen for 72% of</div><div>vertical upflow test cases, 61% of vertical downflow, and 54% of horizontal flow. Relative intensities of this peak oscillatory mode are evaluated through calculation of Q Factor for the corresponding frequency response peak. Frequency and amplitude of peak oscillatory modes are also evaluated. Overall, vertical upflow is seen to exhibit the most significant oscillatory behavior, although in its maximum case amplitude is only seen to be 7.9% of time-averaged module inlet pressure, indicating there is little safety risk posed by oscillations under current operating conditions. Flow visualization image sequences for each orientation are also presented and used to draw parallels between physical characteristics of condensate film behavior under different operating conditions and trends in oscillatory behavior detected in pressure signals</div><div>Further, the present work outlines a new methodology utilizing temperature and pressure measurements to identify condensation flow regimes. For vertical upflow condensation, amplitude of dynamic temperature and pressure oscillations are shown to clearly indicate transition from counter-current flow regimes (i.e., falling film, oscillating film, flooding) to annular, co-current flow (climbing film flow regime). In horizontal flow condensation, standard deviation between multiple thermocouple measurements distributed around the tube circumference was calculated at all axial (stream-wise) measurement locations. High values of standard deviation are present for stratified flow (stratified flow, wavy-stratified, plug flow), while axisymmetric flow regimes (i.e., slug flow, annular flow) yield significantly lower values. Successful development of this technique represents a valuable contribution to literature as it allows condensation flow regime to be identified without the often-costly restriction of designing a test section to allow optical access. Identified flow regimes in both vertical upflow and horizontal flow orientations are compared to regime maps commonly found in the literature in pursuit of optimum performing maps.</div><div>Finally, the present study aims to better analyze the influence of body force on flow condensation heat transfer by conducting tests at multiple orientations in Earth’s gravity. Dielectric FC-72 is condensed in a smooth stainless-steel tube with 7.12 mm diameter and 574.55 mm condensing length by counterflow of cooling water across the outer surface of the tube. Test conditions span FC-72 mass velocities of 50.3 – 360.3 kg/m2s, test section inlet pressures of 127.0 – 132.1 kPa, and test section inlet thermodynamic equilibrium qualities of 0.13 – 1.15. A subset of data gathered corresponding to axisymmetric, annular condensation heat transfer is identified and a detailed methodology for data reduction to calculate heat transfer coefficient presented. Uncertainty analysis is also presented and indicates channel average heat transfer coefficients are calculated within ±3.6% to ±26.7% (depending on operating conditions). Analysis of parametric trends for condensation heat transfer reveals the dominant influence of mass velocity (flow inertia), secondary influence of vapor mass fraction (thermodynamic equilibrium quality), and strong dependence on orientation (body force) at low mass velocities. At higher mass velocities results for all orientations investigated begin to converge, indicating body force independent annular condensation heat transfer is achieved. Separated Flow Model predictions of vertical downflow condensation heat transfer provide reasonable agreement with experimental results, evidence by a Mean Absolute Error (MAE) of 31.2%. Evaluation of condensation heat transfer correlations for horizontal flow reveal most correlations struggle for cases with high liquid content. Specific correlations are identified for superior accuracy in predicting the measured data.</div>
|
8 |
ENGINEERING NANOCOMPOSITES AND INTERFACES FOR CONDUCTION AND RADIATION THERMAL MANAGEMENTXiangyu Li (5929961) 17 January 2019 (has links)
<p>The thesis covers the following topics:</p>
<p>1. aggregation and size effect on metal-polymer nanocomposite thermal interface materials</p>
<p>2. diffusion limited cluster aggregation lattice simulation on thermal conductivty</p>
<p>3. thermal interfacial resistance reduction between metal and dielectric materials by inserting an intermediate metal layer</p>
<p>4. absence of coupled thermal interfaces in al2o3/ni/al2o3 sandwich structure</p>
<p>5. ultra-efficient low-cost radiative cooling paints</p>
|
9 |
NET ZERO DESICCANT ASSISTED EVAPORATIVE COOLING FOR DATA CENTERSDavid Okposio (8844806) 15 May 2020 (has links)
<p>Evaporative cooling is a highly energy efficient alternative
to conventional vapor compression cooling system. The sensible cooling effect
of evaporative cooling systems is well documented in the literature. Direct
evaporative cooling however increases the relative humidity of the air as it
cools it. This has made it unsuitable for data centers and other applications
where humidity control is important. Desiccant-based dehumidifiers (liquid,
solid or composites) absorb moisture from the cooled air to control humidity
and is regenerated using waste heat from the data center. This work is an
experimental and theoretical investigation of the use of desiccant assisted
evaporative cooling for data center cooling according to ASHRAE thermal
guidelines, TC 9.9. The thickness (depth) of the cooling pad was varied to
study its effect on sensible heat loss and latent heat gain. The velocity of
air through the pad was measured to determine its effect on sensible cooling.
The flow rate of water over the pad was also varied to find the optimal flow
for rate for dry bulb depression. The configuration was such that the rotary
desiccant wheel (impregnated with silica gel) comes after the direct evaporative
cooler. The rotary desiccant wheel was split in a 1:1 ratio for cooling and
reactivation at lower temperatures. The dehumidification effectiveness of a
fixed bed desiccant dehumidifier was compared with that of a rotary desiccant
wheel and a thermoelectric dehumidifier. A novel condensate recovery system
using the Peltier effect was proposed to recover moisture from the return air stream,
(by cooling the return air stream below its dew point temperature) thereby
optimizing the water consumption of evaporative cooling technology and
providing suitable air quality for data center cooling. The moisture recovery
unit was found to reduce the mass of water lost through evaporation by an
average of fifty percent irrespective of the pad depth.</p>
<p> </p>
|
10 |
COMPLIANT MICROSTRUCTURES FOR ENHANCED THERMAL CONDUCTANCE ACROSS INTERFACESJin Cui (9187607) 04 August 2020 (has links)
<p>With the extreme increases in power density of electronic
devices, the contact thermal resistance imposed at interfaces between mating solids
becomes a major challenge in thermal management. This contact thermal
resistance is mainly caused by micro-scale surface asperities (roughness) and
wavy profile of surface (nonflatness) which severely reduce the contact area
available for heat conduction. High contact pressures (1~100 MPa) can be used
to deform the surface asperities to increase contact area. Besides, a variety
of conventional thermal interface materials (TIM), such as greases and pastes,
are used to improve the contact thermal conductance by filling the remaining
air gaps. However, there are still some applications where such TIMs are
disallowed for reworkability concerns. For example, heat must be transferred
across dry interfaces to a heat sink in pluggable opto-electronic transceivers
which needs to repeatedly slide into / out of contact with the heat sink. Dry
contact and low contact pressures are required for this sliding application.</p>
<p>This dissertation presents a metallized micro-spring array
as a surface coating to enhance dry contact thermal conductance under ultra-low
interfacial contact pressure. The shape of the micro-springs is designed to be
mechanically compliant to achieve conformal contact between nonflat surfaces.
The polymer scaffolds of the micro-structured TIMs are fabricated by using a
custom projection micro-stereolithography (μSL) system. By applying the
projection scheme, this method is more cost-effective and high-throughput than
other 3D micro-fabrication methods using a scanning scheme. The thermal
conductance of polymer micro-springs is further enhanced by metallization using
plating and surface polishing on their top surfaces. The measured mechanical
compliance of TIMs indicates that they can deform ~10s μm under ~10s kPa
contact pressures over their footprint area, which is large enough to
accommodate most of surface nonflatness of electronic packages. The measured
thermal resistances of the TIM at different fabrication stages confirms the
enhanced thermal conductance by applying metallization and surface polishing.
Thermal resistances of the TIMs are compared to direct metal-to-metal contact
thermal resistance for flat and nonflat mating surfaces, which confirms that
the TIM outperforms direct contact. A thin layer of soft polymer is coated on
the top surfaces of the TIMs to accommodate surface roughness that has a
smaller spatial period than the micro-springs. For rough surfaces, the
polymer-coated TIM has reduced thermal resistance which is comparable to a
benchmark case where the top surfaces of the TIM are glued to the mating
surface. A polymer base is
designed under the micro-spring array which can provide the advantages for
handling as a standalone material or integration convenience, at the toll of an
increased insertion resistance. Through-holes are designed in the base
layer and coated with thermally conductive metal after metallization to enhance
thermal conductance of the base layer; a thin layer of epoxy is applied between
the base layer and the working surface to reduce contact thermal resistance exposed
on the base layer. Cycling tests are conducted on the TIMs; the results show
good early-stage reliability of the TIM under normal pressure, sliding contact,
and temperature cycles. The TIM is thermally demonstrated on a pluggable
application, namely, a CFP4 module, which shows enhanced thermal conductance by
applying the TIM. </p>
To further enhance the potential mechanical
compliance of microstructured surfaces, a stable double curved beam structure
with near-zero stiffness composed of intrinsic negative and positive stiffness
elastic elements is designed and fabricated by introducing residual stresses.
Stiffness measurements shows that the positive-stiffness single curved beam,
which is the same as the top beam in the double curved beam, is stiffer than the
double curved beam, which confirms the negative stiffness of the bottom beam in
the double curved beam. Layered near zero-stiffness materials made of these
structures are built to demonstrate the scalability of the zero-stiffness zone.
|
Page generated in 0.1642 seconds