• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation and Modeling of Key Design Parameters in Flow Boiling and Condensation

Lucas E O'Neill (6944528) 15 August 2019 (has links)
<div>In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, pre-heater, condenser, etc.) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information. Conclusions from this analysis are used to isolate instabilities present within the system due to physical interplay between thermodynamic and hydrodynamic effects. Parametric analysis is undertaken to better understand the conditions under which these instabilities form and their impact on system performance. Several prior stability maps are presented, with new stability maps provided to better address contextual trends discovered in the present study.</div><div>Further, this study utilizes experimental results for vertical upflow boiling of FC-72 in a rectangular channel with finite inlet quality to investigate Density Wave Oscillations (DWOs) and assess their potential impact on design of two-phase systems for future space missions. High-speed flow visualization image sequences are presented and used to directly relate the cyclical passage of High and Low Density Fronts (HDFs and LDFs) to dominant low-frequency oscillations present in transient pressure signals commonly attributed to DWOs. A methodology is presented to determine frequency and amplitude of DWO induced pressure oscillations, which are then plotted for a wide range of relevant operating conditions. Mass velocity (flow inertia) is seen to be the dominant parameter influencing frequency and amplitude of DWOs. Amplitude of pressure oscillations is at most 7% of the time-averaged pressure level for current operating conditions, meaning there is little risk to space missions. Reconstruction of experimental pressure signals using a waveform defined by frequency and amplitude of DWO induced pressure fluctuations is seen to have only moderate agreement with the original signal due to the oversimplifications of treating DWO induced fluctuations as perfectly sinusoidal in nature, assuming they occur at a constant frequency value, and neglecting other transient flow features. This approach is nonetheless determined to have potential value for use as a boundary condition to introduce DWOs in two-phase flow simulations should a model be capable of accurately predicting frequency and amplitude of oscillation.</div><div>Additionally, this study presents a new mechanistic model for Density Wave Oscillations (DWOs) in vertical upflow boiling using conclusions drawn from analysis of flow visualization images and transient experimental results as a basis from which to begin modeling. Counter to many prior studies attributing DWOs to feedback effects between flow rate, pressure drop, and flow enthalpy causing oscillations in position of the bulk boiling boundary, the present instability mode stems primarily from body force acting on liquid and vapor phases in a separated flow regime leading to liquid accumulation in the near-inlet region of the test section, which eventually departs and moves along the channel, acting to re-wet liquid film along the channel walls and re-establish annular, co-current flow. This process was modeled by dividing the test section into three distinct control volumes and solving transient conservation equations for each, yielding predictions of frequencies at which this process occurs as well as amplitude of associated pressure oscillations. Values for these parameters were validated against an experimental database of 236 FC-72 points and show the model provides good predictive accuracy and capably captures the influence of parametric changes to operating conditions.</div><div>Also, this study shows analysis of pressure signals in condensing systems reveal the presence of relevant oscillatory phenomena during flow condensation as well, which may impact performance in applications concerned with precise system control. Towards this end, the present study presents results for oscillatory behavior observed in pressure measurements during flow condensation of FC-72 in a smooth circular tube in vertical upflow, vertical downflow, and horizontal flow orientations. Dynamic behavior observed within the test section is determined to be independent of other components within the flow loop, allowing it to be isolated and interpreted as resulting from physical aspects of two-phase flow with condensation. The presence of a peak oscillatory mode (one of significantly larger amplitude than any others present) is seen for 72% of</div><div>vertical upflow test cases, 61% of vertical downflow, and 54% of horizontal flow. Relative intensities of this peak oscillatory mode are evaluated through calculation of Q Factor for the corresponding frequency response peak. Frequency and amplitude of peak oscillatory modes are also evaluated. Overall, vertical upflow is seen to exhibit the most significant oscillatory behavior, although in its maximum case amplitude is only seen to be 7.9% of time-averaged module inlet pressure, indicating there is little safety risk posed by oscillations under current operating conditions. Flow visualization image sequences for each orientation are also presented and used to draw parallels between physical characteristics of condensate film behavior under different operating conditions and trends in oscillatory behavior detected in pressure signals</div><div>Further, the present work outlines a new methodology utilizing temperature and pressure measurements to identify condensation flow regimes. For vertical upflow condensation, amplitude of dynamic temperature and pressure oscillations are shown to clearly indicate transition from counter-current flow regimes (i.e., falling film, oscillating film, flooding) to annular, co-current flow (climbing film flow regime). In horizontal flow condensation, standard deviation between multiple thermocouple measurements distributed around the tube circumference was calculated at all axial (stream-wise) measurement locations. High values of standard deviation are present for stratified flow (stratified flow, wavy-stratified, plug flow), while axisymmetric flow regimes (i.e., slug flow, annular flow) yield significantly lower values. Successful development of this technique represents a valuable contribution to literature as it allows condensation flow regime to be identified without the often-costly restriction of designing a test section to allow optical access. Identified flow regimes in both vertical upflow and horizontal flow orientations are compared to regime maps commonly found in the literature in pursuit of optimum performing maps.</div><div>Finally, the present study aims to better analyze the influence of body force on flow condensation heat transfer by conducting tests at multiple orientations in Earth’s gravity. Dielectric FC-72 is condensed in a smooth stainless-steel tube with 7.12 mm diameter and 574.55 mm condensing length by counterflow of cooling water across the outer surface of the tube. Test conditions span FC-72 mass velocities of 50.3 – 360.3 kg/m2s, test section inlet pressures of 127.0 – 132.1 kPa, and test section inlet thermodynamic equilibrium qualities of 0.13 – 1.15. A subset of data gathered corresponding to axisymmetric, annular condensation heat transfer is identified and a detailed methodology for data reduction to calculate heat transfer coefficient presented. Uncertainty analysis is also presented and indicates channel average heat transfer coefficients are calculated within ±3.6% to ±26.7% (depending on operating conditions). Analysis of parametric trends for condensation heat transfer reveals the dominant influence of mass velocity (flow inertia), secondary influence of vapor mass fraction (thermodynamic equilibrium quality), and strong dependence on orientation (body force) at low mass velocities. At higher mass velocities results for all orientations investigated begin to converge, indicating body force independent annular condensation heat transfer is achieved. Separated Flow Model predictions of vertical downflow condensation heat transfer provide reasonable agreement with experimental results, evidence by a Mean Absolute Error (MAE) of 31.2%. Evaluation of condensation heat transfer correlations for horizontal flow reveal most correlations struggle for cases with high liquid content. Specific correlations are identified for superior accuracy in predicting the measured data.</div>
2

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF THERMAL MANAGEMENT IN FLOW BOILING

Jeongmin Lee (13133907) 21 July 2022 (has links)
<p>The present study investigates the capability of computational fluid dynamics (CFD) extensively to predict hydrodynamics and heat transfer characteristics of FC-72 flow boiling in a 2.5-mm ´ 5.0-mm rectangular channel and experimentally explores system instabilities: <em>density wave oscillation</em> (DWO), <em>pressure drop oscillation</em> (PDO) and <em>parallel channel instability</em> (PCI) in a micro-channel heat sink containing 38 parallel channels having a hydraulic diameter of 316-μm. </p> <p>The computational method performs transient analysis to model the entire flow field and bubble behavior for subcooled flow boiling in a rectangular channel heated on two opposite walls at high heat flux conditions of about 40% – 80% of <em>critical heat flux</em> (CHF).  The 3D CFD solver is constructed in ANSYS Fluent in which the <em>volume of fluid</em> (VOF) model is combined with a <em>shear stress transport</em> (SST) <em>k</em>-<em>ω</em> turbulent model, a surface tension model, and interfacial phase change model, along with a model for effects of shear-lift and bubble collision dispersion to overcome a fundamental weakness in modeling multiphase flows.  Detailed information about bubble distribution in the vicinity of the heated surface, thermal conduction inside the heating wall, local heat fluxes passing through the solid-fluid interface, and velocity and temperature profiles, which are not easily observed or measured by experiments, is carefully evaluated.  The simulation results are compared to experimental data to validate the solver’s ability to predict the flow configuration with single/double-side heating.  The added momentum by shear-lift is shown to govern primarily the dynamic behavior of tiny bubbles stuck on the heated bottom wall and therefore has a more significant impact on both heat transfer and heated wall temperature.  By including bubble collision dispersion force, coalescence of densely packed bubbles in the bulk region is significantly inhibited, with more giant bubbles even incurring additional breakup into smaller bubbles and culminating in far less vapor accumulation along the top wall.  Including these momentums is shown to yield better agreement with local interfacial behavior along the channel, overall flow pattern, and heat transfer parameters (wall temperature and heat transfer coefficient) observed and measured in experiments.  The computational approach is also shown to be highly effective at predicting local phenomena (velocity and temperature profiles) not easily determined through experiments.  Different flow regimes predicted along the heated length exhibit a number of dominant mechanisms, including bubble nucleation, bubble growth, coalescence, vapor blankets, interfacial waviness, and residual liquid sub-layer, all of which agree well with the experiment.  Vapor velocity is shown to increase appreciably along the heated length because of increased void fraction, while liquid velocity experiences large fluctuations.  Non-equilibrium effects are accentuated with increasing mass velocity, contributing minor deviations of fluid temperature from simulations compared to those predicted by the analytical method.  Predicted wall temperature is reasonably uniform in the middle of the heated length but increases in the entrance region due to sensible heat transfer in the subcooled liquid and decreases toward the exit, primarily because of flow acceleration resulting from increased void fraction.  When it comes to analyzing heat transfer mechanisms at extremely high heat flux via CFD, predicted flow pattern, bubble behavior, and heat transfer parameters (such as wall temperature excursion and thermal energy concentration) clearly represent phenomena of premature CHF, which take place slightly earlier than actual operating conditions.  But, despite these slight differences, the present computational work does demonstrate the ability to effectively predict the severe degradation in heat transfer performance commonly encountered at heat fluxes nearing CHF.  </p> <p>Much of the published literature addressing flow instabilities in thermal management systems employing micro-channel modules are focused on instability characteristics of the module alone, and far fewer studies have aimed at understanding the relationship between these characteristics and compressive volume in the flow loop external to the module.  From a practical point of view, developers of micro-channel thermal management systems for many modern applications are in pursuit of practical remedies that would significantly mitigate instabilities and their impact on cooling performance.  Experiments are executed using FC-72 as a working fluid with a wide range of mass velocities and a reasonably constant inlet subcooling of ~15°C.  The flow instabilities are reflected in pressure fluctuations detected mainly in the heat sink’s upstream plenum.  Both inlet pressure and pressure drop signals are analyzed in pursuit of amplitude and frequency characteristics for different mass velocities and over a range of heat fluxes.  The current experimental study also examines the effects of compressible volume location in a closed pump-driven flow loop designed to deliver FC-72 to a micro-channel test module having 38 channels with 315-μm hydraulic diameter.  Three accumulator locations are investigated: upstream of the test module, downstream of the test module, and between the condenser and pump.  Both high-frequency temporal parameter data and high-speed video records are analyzed for ranges of mass velocity and heat flux, with inlet subcooling held constant at ~15°C.  PDO is shown to dominate when the accumulator is situated upstream, whereas PCI is dominant for the other two locations.  Appreciable confinement of bubbles in individual channels is shown to promote rapid axial bubble growth.  The study shows significant variations in the amount of vapor generated and dominant flow patterns among channels, a clear manifestation of PCI, especially for low mass velocities and high heat fluxes.  It is also shown effects of the heat sink’s instabilities are felt in other components of the flow loop.  The parametric trends for PCI are investigated with the aid of three different types of stability maps which show different abilities at demarcating stable and unstable operations.  PDO shows severe pressure oscillations across the micro-channel heat sink, with rapid bubble growth and confinement, elongated bubble expansion in both directions, flow stagnation, and flow reversal (including vapor backflow to the inlet plenum) constituting the principal sequence of events characterizing the instability.  Spectral analysis of pressure signals is performed using Fast Fourier Transform, which shows PDO extending the inlet pressure fluctuations with the same dominant frequency to other upstream flow loop components, with higher amplitudes closer to the pump exit.  From a practical system operation point of view, throttling the flow upstream of the heat sink eliminates PDO but renders PCI dominant, and placing the accumulator in the liquid flow segment of the loop between the condenser and pump ensures the most stable operation.</p>

Page generated in 0.3804 seconds