• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermohydraulische Modellierung der Kondensation von Dampf in einer unterkühlten Flüssigkeitsströmung

Gregor, Sabine, Beyer, Matthias, Prasser, Horst-Michael January 2006 (has links)
Nach einer kurzen technischen Beschreibung der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW und der verwendeten Messtechnik werden die theoretischen Grundlagen zur Modellierung der Kondensation von Dampf in einer Wasserströmung erläutert. Dabei gehen die Autoren besonders auf die Auswahl geeigneter Modelle zur Beschreibung des Wärmeübergangs und der Zwischenphasengrenzfläche im Druckbereich zwischen 10 und 65 bar detailliert ein. Außerdem werden verschiedene Drift-Flux-Modelle auf ihre Tauglichkeit anhand von experimentellen Daten geprüft. Da Veränderungen thermodynamischer und strömungstechnischer Parameter hauptsächlich in axialer Richtung stattfinden, wurden diese Modelle in einen eindimensionalen Code eingebettet, mit dem der Strömungsverlauf entlang einer vertikalen Rohrleitung mit einer Länge von 8 m und einem Nenndurchmesser von 200 mm berechnet werden kann. Anschließend werden Aufbau und Funktion dieses Programms vorgestellt. Nachfolgend vergleichen die Autoren experimentelle und berechnete Strömungsverläufe bei der Kondensation von Dampf sowohl in einer unterkühlten Wasserströmung als auch nahe der Siedetemperatur. Dabei wird der Einfluss wichtiger Randbedingungen, wie z.B. Druck oder Primärblasengröße, auf die Kondensationsintensität analysiert. Eine Einschätzung der Fehlerbanden für die experimentellen Daten, die verwendeten Gittersensoren und die numerische Simulation schließen den Bericht ab.
2

Improved detection and tracking of objects in surveillance video

Denman, Simon Paul January 2009 (has links)
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very dicult for a human op- erator to eectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identication at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the eective use of more advanced technolo- gies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identication. Before an object can be tracked, it must be detected. Motion segmentation tech- niques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erro- neous motion caused by noise and lighting eects, or due to the detection routines being unable to split occluded regions into their component objects. Particle l- ters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (of- ten manual) detection to initialise the lter. Particle lters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle lter. A novel hybrid motion segmentation / optical ow algorithm, capable of simulta- neously extracting multiple layers of foreground and optical ow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical ow is capable of extracting a mov- ing object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and signi- cant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle lter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benet from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle lter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking sys- tems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classication in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a signicant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi- automated video processing and therefore improve security in areas under surveil- lance.
3

Experimental Investigation and Modeling of Key Design Parameters in Flow Boiling and Condensation

Lucas E O'Neill (6944528) 15 August 2019 (has links)
<div>In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, pre-heater, condenser, etc.) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information. Conclusions from this analysis are used to isolate instabilities present within the system due to physical interplay between thermodynamic and hydrodynamic effects. Parametric analysis is undertaken to better understand the conditions under which these instabilities form and their impact on system performance. Several prior stability maps are presented, with new stability maps provided to better address contextual trends discovered in the present study.</div><div>Further, this study utilizes experimental results for vertical upflow boiling of FC-72 in a rectangular channel with finite inlet quality to investigate Density Wave Oscillations (DWOs) and assess their potential impact on design of two-phase systems for future space missions. High-speed flow visualization image sequences are presented and used to directly relate the cyclical passage of High and Low Density Fronts (HDFs and LDFs) to dominant low-frequency oscillations present in transient pressure signals commonly attributed to DWOs. A methodology is presented to determine frequency and amplitude of DWO induced pressure oscillations, which are then plotted for a wide range of relevant operating conditions. Mass velocity (flow inertia) is seen to be the dominant parameter influencing frequency and amplitude of DWOs. Amplitude of pressure oscillations is at most 7% of the time-averaged pressure level for current operating conditions, meaning there is little risk to space missions. Reconstruction of experimental pressure signals using a waveform defined by frequency and amplitude of DWO induced pressure fluctuations is seen to have only moderate agreement with the original signal due to the oversimplifications of treating DWO induced fluctuations as perfectly sinusoidal in nature, assuming they occur at a constant frequency value, and neglecting other transient flow features. This approach is nonetheless determined to have potential value for use as a boundary condition to introduce DWOs in two-phase flow simulations should a model be capable of accurately predicting frequency and amplitude of oscillation.</div><div>Additionally, this study presents a new mechanistic model for Density Wave Oscillations (DWOs) in vertical upflow boiling using conclusions drawn from analysis of flow visualization images and transient experimental results as a basis from which to begin modeling. Counter to many prior studies attributing DWOs to feedback effects between flow rate, pressure drop, and flow enthalpy causing oscillations in position of the bulk boiling boundary, the present instability mode stems primarily from body force acting on liquid and vapor phases in a separated flow regime leading to liquid accumulation in the near-inlet region of the test section, which eventually departs and moves along the channel, acting to re-wet liquid film along the channel walls and re-establish annular, co-current flow. This process was modeled by dividing the test section into three distinct control volumes and solving transient conservation equations for each, yielding predictions of frequencies at which this process occurs as well as amplitude of associated pressure oscillations. Values for these parameters were validated against an experimental database of 236 FC-72 points and show the model provides good predictive accuracy and capably captures the influence of parametric changes to operating conditions.</div><div>Also, this study shows analysis of pressure signals in condensing systems reveal the presence of relevant oscillatory phenomena during flow condensation as well, which may impact performance in applications concerned with precise system control. Towards this end, the present study presents results for oscillatory behavior observed in pressure measurements during flow condensation of FC-72 in a smooth circular tube in vertical upflow, vertical downflow, and horizontal flow orientations. Dynamic behavior observed within the test section is determined to be independent of other components within the flow loop, allowing it to be isolated and interpreted as resulting from physical aspects of two-phase flow with condensation. The presence of a peak oscillatory mode (one of significantly larger amplitude than any others present) is seen for 72% of</div><div>vertical upflow test cases, 61% of vertical downflow, and 54% of horizontal flow. Relative intensities of this peak oscillatory mode are evaluated through calculation of Q Factor for the corresponding frequency response peak. Frequency and amplitude of peak oscillatory modes are also evaluated. Overall, vertical upflow is seen to exhibit the most significant oscillatory behavior, although in its maximum case amplitude is only seen to be 7.9% of time-averaged module inlet pressure, indicating there is little safety risk posed by oscillations under current operating conditions. Flow visualization image sequences for each orientation are also presented and used to draw parallels between physical characteristics of condensate film behavior under different operating conditions and trends in oscillatory behavior detected in pressure signals</div><div>Further, the present work outlines a new methodology utilizing temperature and pressure measurements to identify condensation flow regimes. For vertical upflow condensation, amplitude of dynamic temperature and pressure oscillations are shown to clearly indicate transition from counter-current flow regimes (i.e., falling film, oscillating film, flooding) to annular, co-current flow (climbing film flow regime). In horizontal flow condensation, standard deviation between multiple thermocouple measurements distributed around the tube circumference was calculated at all axial (stream-wise) measurement locations. High values of standard deviation are present for stratified flow (stratified flow, wavy-stratified, plug flow), while axisymmetric flow regimes (i.e., slug flow, annular flow) yield significantly lower values. Successful development of this technique represents a valuable contribution to literature as it allows condensation flow regime to be identified without the often-costly restriction of designing a test section to allow optical access. Identified flow regimes in both vertical upflow and horizontal flow orientations are compared to regime maps commonly found in the literature in pursuit of optimum performing maps.</div><div>Finally, the present study aims to better analyze the influence of body force on flow condensation heat transfer by conducting tests at multiple orientations in Earth’s gravity. Dielectric FC-72 is condensed in a smooth stainless-steel tube with 7.12 mm diameter and 574.55 mm condensing length by counterflow of cooling water across the outer surface of the tube. Test conditions span FC-72 mass velocities of 50.3 – 360.3 kg/m2s, test section inlet pressures of 127.0 – 132.1 kPa, and test section inlet thermodynamic equilibrium qualities of 0.13 – 1.15. A subset of data gathered corresponding to axisymmetric, annular condensation heat transfer is identified and a detailed methodology for data reduction to calculate heat transfer coefficient presented. Uncertainty analysis is also presented and indicates channel average heat transfer coefficients are calculated within ±3.6% to ±26.7% (depending on operating conditions). Analysis of parametric trends for condensation heat transfer reveals the dominant influence of mass velocity (flow inertia), secondary influence of vapor mass fraction (thermodynamic equilibrium quality), and strong dependence on orientation (body force) at low mass velocities. At higher mass velocities results for all orientations investigated begin to converge, indicating body force independent annular condensation heat transfer is achieved. Separated Flow Model predictions of vertical downflow condensation heat transfer provide reasonable agreement with experimental results, evidence by a Mean Absolute Error (MAE) of 31.2%. Evaluation of condensation heat transfer correlations for horizontal flow reveal most correlations struggle for cases with high liquid content. Specific correlations are identified for superior accuracy in predicting the measured data.</div>

Page generated in 0.1198 seconds