Spelling suggestions: "subject:"cry contact"" "subject:"bry contact""
1 |
Design and implementation of a reciprocating friction force measurement system for the investigation of dry contact bearings in a controlled atmosphereBaker, Robert K. January 1993 (has links)
No description available.
|
2 |
COMPLIANT MICROSTRUCTURES FOR ENHANCED THERMAL CONDUCTANCE ACROSS INTERFACESJin Cui (9187607) 04 August 2020 (has links)
<p>With the extreme increases in power density of electronic
devices, the contact thermal resistance imposed at interfaces between mating solids
becomes a major challenge in thermal management. This contact thermal
resistance is mainly caused by micro-scale surface asperities (roughness) and
wavy profile of surface (nonflatness) which severely reduce the contact area
available for heat conduction. High contact pressures (1~100 MPa) can be used
to deform the surface asperities to increase contact area. Besides, a variety
of conventional thermal interface materials (TIM), such as greases and pastes,
are used to improve the contact thermal conductance by filling the remaining
air gaps. However, there are still some applications where such TIMs are
disallowed for reworkability concerns. For example, heat must be transferred
across dry interfaces to a heat sink in pluggable opto-electronic transceivers
which needs to repeatedly slide into / out of contact with the heat sink. Dry
contact and low contact pressures are required for this sliding application.</p>
<p>This dissertation presents a metallized micro-spring array
as a surface coating to enhance dry contact thermal conductance under ultra-low
interfacial contact pressure. The shape of the micro-springs is designed to be
mechanically compliant to achieve conformal contact between nonflat surfaces.
The polymer scaffolds of the micro-structured TIMs are fabricated by using a
custom projection micro-stereolithography (μSL) system. By applying the
projection scheme, this method is more cost-effective and high-throughput than
other 3D micro-fabrication methods using a scanning scheme. The thermal
conductance of polymer micro-springs is further enhanced by metallization using
plating and surface polishing on their top surfaces. The measured mechanical
compliance of TIMs indicates that they can deform ~10s μm under ~10s kPa
contact pressures over their footprint area, which is large enough to
accommodate most of surface nonflatness of electronic packages. The measured
thermal resistances of the TIM at different fabrication stages confirms the
enhanced thermal conductance by applying metallization and surface polishing.
Thermal resistances of the TIMs are compared to direct metal-to-metal contact
thermal resistance for flat and nonflat mating surfaces, which confirms that
the TIM outperforms direct contact. A thin layer of soft polymer is coated on
the top surfaces of the TIMs to accommodate surface roughness that has a
smaller spatial period than the micro-springs. For rough surfaces, the
polymer-coated TIM has reduced thermal resistance which is comparable to a
benchmark case where the top surfaces of the TIM are glued to the mating
surface. A polymer base is
designed under the micro-spring array which can provide the advantages for
handling as a standalone material or integration convenience, at the toll of an
increased insertion resistance. Through-holes are designed in the base
layer and coated with thermally conductive metal after metallization to enhance
thermal conductance of the base layer; a thin layer of epoxy is applied between
the base layer and the working surface to reduce contact thermal resistance exposed
on the base layer. Cycling tests are conducted on the TIMs; the results show
good early-stage reliability of the TIM under normal pressure, sliding contact,
and temperature cycles. The TIM is thermally demonstrated on a pluggable
application, namely, a CFP4 module, which shows enhanced thermal conductance by
applying the TIM. </p>
To further enhance the potential mechanical
compliance of microstructured surfaces, a stable double curved beam structure
with near-zero stiffness composed of intrinsic negative and positive stiffness
elastic elements is designed and fabricated by introducing residual stresses.
Stiffness measurements shows that the positive-stiffness single curved beam,
which is the same as the top beam in the double curved beam, is stiffer than the
double curved beam, which confirms the negative stiffness of the bottom beam in
the double curved beam. Layered near zero-stiffness materials made of these
structures are built to demonstrate the scalability of the zero-stiffness zone.
|
3 |
Influence of Surface Carbon Content on the Wear of Threaded Connections in Rock Drilling SteelsHälsing, Andreas January 2023 (has links)
This thesis work was conducted at Luleå University of Technology in collaboration with Sandvik Rock Tools. The aim of the work was to determine the influence of carbon content on the wear performance in carburized steel in the dry contact interface of threaded connections between drill rods. In order to investigate this, samples of drill rod steel were carburized to three different carbon concentrations and shot peened to replicate the production process of a drill rod. The samples were wear tested by utilizing a twin-disc wear tester with one disc rotating at 100 RPM and the other at 3000 RPM to mimic the operating conditions in the threaded connection between drill rods. The results was evaluated by wear rate, surface topography, hardness as well as optical analysis by light optical microscopy and scanning electron microscopy. The results show that an increased surface carbon content provide a decrease in wear rate and an increase in hardness in the surface layer that undergo microstructural changes due to the frictional heat and contact pressure during wear testing. The primary wear mechanisms were identified as plastic deformation, adhesive scratching and material removal through delamination.
|
Page generated in 0.0584 seconds