• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and implementation of a reciprocating friction force measurement system for the investigation of dry contact bearings in a controlled atmosphere

Baker, Robert K. January 1993 (has links)
No description available.
2

COMPLIANT MICROSTRUCTURES FOR ENHANCED THERMAL CONDUCTANCE ACROSS INTERFACES

Jin Cui (9187607) 04 August 2020 (has links)
<p>With the extreme increases in power density of electronic devices, the contact thermal resistance imposed at interfaces between mating solids becomes a major challenge in thermal management. This contact thermal resistance is mainly caused by micro-scale surface asperities (roughness) and wavy profile of surface (nonflatness) which severely reduce the contact area available for heat conduction. High contact pressures (1~100 MPa) can be used to deform the surface asperities to increase contact area. Besides, a variety of conventional thermal interface materials (TIM), such as greases and pastes, are used to improve the contact thermal conductance by filling the remaining air gaps. However, there are still some applications where such TIMs are disallowed for reworkability concerns. For example, heat must be transferred across dry interfaces to a heat sink in pluggable opto-electronic transceivers which needs to repeatedly slide into / out of contact with the heat sink. Dry contact and low contact pressures are required for this sliding application.</p> <p>This dissertation presents a metallized micro-spring array as a surface coating to enhance dry contact thermal conductance under ultra-low interfacial contact pressure. The shape of the micro-springs is designed to be mechanically compliant to achieve conformal contact between nonflat surfaces. The polymer scaffolds of the micro-structured TIMs are fabricated by using a custom projection micro-stereolithography (μSL) system. By applying the projection scheme, this method is more cost-effective and high-throughput than other 3D micro-fabrication methods using a scanning scheme. The thermal conductance of polymer micro-springs is further enhanced by metallization using plating and surface polishing on their top surfaces. The measured mechanical compliance of TIMs indicates that they can deform ~10s μm under ~10s kPa contact pressures over their footprint area, which is large enough to accommodate most of surface nonflatness of electronic packages. The measured thermal resistances of the TIM at different fabrication stages confirms the enhanced thermal conductance by applying metallization and surface polishing. Thermal resistances of the TIMs are compared to direct metal-to-metal contact thermal resistance for flat and nonflat mating surfaces, which confirms that the TIM outperforms direct contact. A thin layer of soft polymer is coated on the top surfaces of the TIMs to accommodate surface roughness that has a smaller spatial period than the micro-springs. For rough surfaces, the polymer-coated TIM has reduced thermal resistance which is comparable to a benchmark case where the top surfaces of the TIM are glued to the mating surface. A polymer base is designed under the micro-spring array which can provide the advantages for handling as a standalone material or integration convenience, at the toll of an increased insertion resistance. Through-holes are designed in the base layer and coated with thermally conductive metal after metallization to enhance thermal conductance of the base layer; a thin layer of epoxy is applied between the base layer and the working surface to reduce contact thermal resistance exposed on the base layer. Cycling tests are conducted on the TIMs; the results show good early-stage reliability of the TIM under normal pressure, sliding contact, and temperature cycles. The TIM is thermally demonstrated on a pluggable application, namely, a CFP4 module, which shows enhanced thermal conductance by applying the TIM. </p> To further enhance the potential mechanical compliance of microstructured surfaces, a stable double curved beam structure with near-zero stiffness composed of intrinsic negative and positive stiffness elastic elements is designed and fabricated by introducing residual stresses. Stiffness measurements shows that the positive-stiffness single curved beam, which is the same as the top beam in the double curved beam, is stiffer than the double curved beam, which confirms the negative stiffness of the bottom beam in the double curved beam. Layered near zero-stiffness materials made of these structures are built to demonstrate the scalability of the zero-stiffness zone.
3

Influence of Surface Carbon Content on the Wear of Threaded Connections in Rock Drilling Steels

Hälsing, Andreas January 2023 (has links)
This thesis work was conducted at Luleå University of Technology in collaboration with Sandvik Rock Tools. The aim of the work was to determine the influence of carbon content on the wear performance in carburized steel in the dry contact interface of threaded connections between drill rods. In order to investigate this, samples of drill rod steel were carburized to three different carbon concentrations and shot peened to replicate the production process of a drill rod. The samples were wear tested by utilizing a twin-disc wear tester with one disc rotating at 100 RPM and the other at 3000 RPM to mimic the operating conditions in the threaded connection between drill rods. The results was evaluated by wear rate, surface topography, hardness as well as optical analysis by light optical microscopy and scanning electron microscopy. The results show that an increased surface carbon content provide a decrease in wear rate and an increase in hardness in the surface layer that undergo microstructural changes due to the frictional heat and contact pressure during wear testing. The primary wear mechanisms were identified as plastic deformation, adhesive scratching and material removal through delamination.

Page generated in 0.0496 seconds