• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Capsule Networks using zero-skipping and pruning

Sharifi, Ramin 15 November 2021 (has links)
Capsule Networks are the next generation of image classifiers. Although they have several advantages over conventional Convolutional Neural Networks (CNNs), they remain computationally heavy. Since inference on Capsule Networks is timeconsuming, thier usage becomes limited to tasks in which latency is not essential. Approximation methods in Deep Learning help networks lose redundant parameters to increase speed and lower energy consumption. In the first part of this work, we go through an algorithm called zero-skipping. More than 50% of trained CNNs consist of zeros or values small enough to be considered zero. Since multiplication by zero is a trivial operation, the zero-skipping algorithm can play a massive role in speed increase throughout the network. We investigate the eligibility of Capsule Networks for this algorithm on two different datasets. Our results suggest that Capsule Networks contain enough zeros in their Primary Capsules to benefit from this algorithm. In the second part of this thesis, we investigate pruning as one of the most popular Neural Network approximation methods. Pruning is the act of finding and removing neurons which have low or no impact on the output. We run experiments on four different datasets. Pruning Capsule Networks results in the loss of redundant Primary Capsules. The results show a significant increase in speed with a minimal drop in accuracy. We also, discuss how dataset complexity affects the pruning strategy. / Graduate
2

SQUEEZE AND EXCITE RESIDUAL CAPSULE NETWORK FOR EMBEDDED EDGE DEVICES

Sami Naqvi (13154274) 08 September 2022 (has links)
<p>During recent years, the field of computer vision has evolved rapidly. Convolutional Neural Networks (CNNs) have become the chosen default for implementing computer vision tasks. The popularity is based on how the CNNs have successfully performed the wellknown</p> <p>computer vision tasks such as image annotation, instance segmentation, and others with promising outcomes. However, CNNs have their caveats and need further research to turn them into reliable machine learning algorithms. The disadvantages of CNNs become more evident as the approach to breaking down an input image becomes apparent. Convolutional neural networks group blobs of pixels to identify objects in a given image. Such a</p> <p>technique makes CNNs incapable of breaking down the input images into sub-parts, which could distinguish the orientation and transformation of objects and their parts. The functions in a CNN are competent at learning only the shift-invariant features of the object in an image. The discussed limitations provides researchers and developers a purpose for further enhancing an effective algorithm for computer vision.</p> <p>The opportunity to improve is explored by several distinct approaches, each tackling a unique set of issues in the convolutional neural network’s architecture. The Capsule Network (CapsNet) which brings an innovative approach to resolve issues pertaining to affine transformations</p> <p>by sharing transformation matrices between the different levels of capsules. While, the Residual Network (ResNet) introduced skip connections which allows deeper networks</p> <p>to be more powerful and solves vanishing gradient problem.</p> <p>The motivation of these fusion of these advantageous ideas of CapsNet and ResNet with Squeeze and Excite (SE) Block from Squeeze and Excite Network, this research work presents SE-Residual Capsule Network (SE-RCN), an efficient neural network model. The proposed model, replaces the traditional convolutional layer of CapsNet with skip connections and SE Block to lower the complexity of the CapsNet. The performance of the model is demonstrated on the well known datasets like MNIST and CIFAR-10 and a substantial reduction in the number of training parameters is observed in comparison to similar neural networks. The proposed SE-RCN produces 6.37 Million parameters with an accuracy of 99.71% on the MNIST dataset and on CIFAR-10 dataset it produces 10.55 Million parameters with 83.86% accuracy.</p>
3

Using Capsule Networks for Image and Speech Recognition Problems

January 2018 (has links)
abstract: In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network. In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time per epoch. We show that capsule network achieves higher accuracy when training set size is small. When training set size is larger, capsule network and conventional CNN have comparable recognition accuracy. The training time per epoch for capsule network is longer than conventional CNN because of the dynamic routing algorithm. An analysis of the GPU timing shows that adjusting the capsule structure can help decrease the time complexity of the dynamic routing algorithm significantly. Next, we design a capsule network for speech recognition, specifically, overlapping word recognition. We use both capsule network and conventional CNN to recognize 2 overlapping words in speech files created from 5 word classes. We show that capsule network achieves a considerably higher recognition accuracy (96.92%) compared to conventional CNN (85.19%). Our results show that capsule network recognizes overlapping word by recognizing each individual word in the speech. We also verify the scalability of capsule network by increasing the number of word classes from 5 to 10. Capsule network still shows a high recognition accuracy of 95.42% in case of 10 words while the accuracy of conventional CNN decreases sharply to 73.18%. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
4

Approaches for Efficient Autonomous Exploration using Deep Reinforcement Learning

Thomas Molnar (8735079) 24 April 2020 (has links)
<p>For autonomous exploration of complex and unknown environments, existing Deep Reinforcement Learning (Deep RL) approaches struggle to generalize from computer simulations to real world instances. Deep RL methods typically exhibit low sample efficiency, requiring a large amount of data to develop an optimal policy function for governing an agent's behavior. RL agents expect well-shaped and frequent rewards to receive feedback for updating policies. Yet in real world instances, rewards and feedback tend to be infrequent and sparse.</p><p> </p><p>For sparse reward environments, an intrinsic reward generator can be utilized to facilitate progression towards an optimal policy function. The proposed Augmented Curiosity Modules (ACMs) extend the Intrinsic Curiosity Module (ICM) by Pathak et al. These modules utilize depth image and optical flow predictions with intrinsic rewards to improve sample efficiency. Additionally, the proposed Capsules Exploration Module (Caps-EM) pairs a Capsule Network, rather than a Convolutional Neural Network, architecture with an A2C algorithm. This provides a more compact architecture without need for intrinsic rewards, which the ICM and ACMs require. Tested using ViZDoom for experimentation in visually rich and sparse feature scenarios, both the Depth-Augmented Curiosity Module (D-ACM) and Caps-EM improve autonomous exploration performance and sample efficiency over the ICM. The Caps-EM is superior, using 44% and 83% fewer trainable network parameters than the ICM and D-ACM, respectively. On average across all “My Way Home” scenarios, the Caps-EM converges to a policy function with 1141% and 437% time improvements over the ICM and D-ACM, respectively.</p>
5

RCNX: Residual Capsule Next

Narukkanchira Anilkumar, Arjun 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Machine learning models are rising every day. Most of the Computer Vision oriented machine learning models arise from Convolutional Neural Network’s(CNN) basic structure. Machine learning developers use CNNs extensively in Image classification, Object Recognition, and Image segmentation. Although CNN produces highly compatible models with superior accuracy, they have their disadvantages. Estimating pose and transformation for computer vision applications is a difficult task for CNN. The CNN’s functions are capable of learning only shift-invariant features of an image. These limitations give machine learning developers motivation towards generating more complex algorithms. Search for new machine learning models led to Capsule Networks. This Capsule Network was able to estimate objects’ pose in an image and recognize transformations to these objects. Handwritten digit classification is the task for which capsule networks are to solve at the initial stages. Capsule Networks outperforms all models for the MNIST dataset for handwritten digits, but to use Capsule networks for image classification is not a straightforward multiplication of parameters. By replacing the Capsule Network’s initial layer, a simple Convolutional Layer, with complex architectures in CNNs, authors of Residual Capsule Network achieved a tremendous change in capsule network applications without a high number of parameters. This thesis focuses on improving this recent Residual Capsule Network (RCN) to an extent where accuracy and model size is optimal for the Image classification task with a benchmark of the CIFAR-10 dataset. Our search for an exemplary capsule network led to the invention of RCN2: Residual Capsule Network 2 and RCNX: Residual Capsule NeXt. RCNX, as the next generation of RCN. They outperform existing architectures in the domain of Capsule networks, focusing on image classification such as 3-level RCN, DCNet, DC Net++, Capsule Network, and even outperforms compact CNNs like MobileNet V3. RCN2 achieved an accuracy of 85.12% with 1.95 Million parameters, and RCNX achieved 89.31% accuracy with 1.58 Million parameters on the CIFAR-10 benchmark.
6

Residual Capsule Network

Bhamidi, Sree Bala Shruthi 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Convolutional Neural Network (CNN) have shown a substantial improvement in the field of Machine Learning. But they do come with their own set of drawbacks. Capsule Networks have addressed the limitations of CNNs and have shown a great improvement by calculating the pose and transformation of the image. Deeper networks are more powerful than shallow networks but at the same time, more difficult to train. Residual Networks ease the training and have shown evidence that they can give good accuracy with considerable depth. Putting the best of Capsule Network and Residual Network together, we present Residual Capsule Network and 3-Level Residual Capsule Network, a framework that uses the best of Residual Networks and Capsule Networks. The conventional Convolutional layer in Capsule Network is replaced by skip connections like the Residual Networks to decrease the complexity of the Baseline Capsule Network and seven ensemble Capsule Network. We trained our models on MNIST and CIFAR-10 datasets and have seen a significant decrease in the number of parameters when compared to the Baseline models.
7

Squeeze and Excite Residual Capsule Network for Embedded Edge Devices

Naqvi, Sami 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / During recent years, the field of computer vision has evolved rapidly. Convolutional Neural Networks (CNNs) have become the chosen default for implementing computer vision tasks. The popularity is based on how the CNNs have successfully performed the well-known computer vision tasks such as image annotation, instance segmentation, and others with promising outcomes. However, CNNs have their caveats and need further research to turn them into reliable machine learning algorithms. The disadvantages of CNNs become more evident as the approach to breaking down an input image becomes apparent. Convolutional neural networks group blobs of pixels to identify objects in a given image. Such a technique makes CNNs incapable of breaking down the input images into sub-parts, which could distinguish the orientation and transformation of objects and their parts. The functions in a CNN are competent at learning only the shift-invariant features of the object in an image. The discussed limitations provides researchers and developers a purpose for further enhancing an effective algorithm for computer vision. The opportunity to improve is explored by several distinct approaches, each tackling a unique set of issues in the convolutional neural network’s architecture. The Capsule Network (CapsNet) which brings an innovative approach to resolve issues pertaining to affine transformations by sharing transformation matrices between the different levels of capsules. While, the Residual Network (ResNet) introduced skip connections which allows deeper networks to be more powerful and solves vanishing gradient problem. The motivation of these fusion of these advantageous ideas of CapsNet and ResNet with Squeeze and Excite (SE) Block from Squeeze and Excite Network, this research work presents SE-Residual Capsule Network (SE-RCN), an efficient neural network model. The proposed model, replaces the traditional convolutional layer of CapsNet with skip connections and SE Block to lower the complexity of the CapsNet. The performance of the model is demonstrated on the well known datasets like MNIST and CIFAR-10 and a substantial reduction in the number of training parameters is observed in comparison to similar neural networks. The proposed SE-RCN produces 6.37 Million parameters with an accuracy of 99.71% on the MNIST dataset and on CIFAR-10 dataset it produces 10.55 Million parameters with 83.86% accuracy.
8

RCNX: RESIDUAL CAPSULE NEXT

Arjun Narukkanchira Anilkumar (10702419) 10 May 2021 (has links)
<div>Machine learning models are rising every day. Most of the Computer Vision oriented</div><div>machine learning models arise from Convolutional Neural Network’s(CNN) basic structure.</div><div>Machine learning developers use CNNs extensively in Image classification, Object Recognition,</div><div>and Image segmentation. Although CNN produces highly compatible models with</div><div>superior accuracy, they have their disadvantages. Estimating pose and transformation for</div><div>computer vision applications is a difficult task for CNN. The CNN’s functions are capable of</div><div>learning only shift-invariant features of an image. These limitations give machine learning</div><div>developers motivation towards generating more complex algorithms.</div><div>Search for new machine learning models led to Capsule Networks. This Capsule Network</div><div>was able to estimate objects’ pose in an image and recognize transformations to these</div><div>objects. Handwritten digit classification is the task for which capsule networks are to solve</div><div>at the initial stages. Capsule Networks outperforms all models for the MNIST dataset for</div><div>handwritten digits, but to use Capsule networks for image classification is not a straightforward</div><div>multiplication of parameters. By replacing the Capsule Network’s initial layer, a</div><div>simple Convolutional Layer, with complex architectures in CNNs, authors of Residual Capsule</div><div>Network achieved a tremendous change in capsule network applications without a high</div><div>number of parameters.</div><div>This thesis focuses on improving this recent Residual Capsule Network (RCN) to an</div><div>extent where accuracy and model size is optimal for the Image classification task with a</div><div>benchmark of the CIFAR-10 dataset. Our search for an exemplary capsule network led to</div><div>the invention of RCN2: Residual Capsule Network 2 and RCNX: Residual Capsule NeXt.</div><div>RCNX, as the next generation of RCN. They outperform existing architectures in the domain</div><div>of Capsule networks, focusing on image classification such as 3-level RCN, DCNet, DC</div><div>Net++, Capsule Network, and even outperforms compact CNNs like MobileNet V3.</div><div>RCN2 achieved an accuracy of 85.12% with 1.95 Million parameters, and RCNX achieved</div><div>89.31% accuracy with 1.58 Million parameters on the CIFAR-10 benchmark.</div>
9

Optimizing Capsule Networks

Shiri, Pouya 23 August 2022 (has links)
Capsule Network (CapsNet) was introduced in 2017 as the new generation of the image classifiers to perform supervised classification of images. It incorporates a new structure of neurons which is called a capsule. A capsule is basically a vector of neurons and serves as the basic computation unit in CapsNet. CapsNet has obtained state-of-the-art testing accuracy on the task of classifying the MNIST digit recognition dataset. Despite its fundamental advantages over CNNs, it has its own shortcomings as well. CapsNet provides a relatively high accuracy in classifying images with affine transforms applied to them and also classifying images containing overlapping categories, compared to CNNs. Unlike CNNs, CapsNet creates the representation based on the part to whole relationship of the features of different levels. As a result, it comes with a more robust representation of the input image. CapsNet could only get reasonable inference accuracy on small-scale datasets. Also, it only supports a limited number of categories in the classification task. Finally, CapsNet is a relatively slow network, which is mostly due to the iterative Dynamic Routing (DR) algorithm used in it. There have been several works trying to address the shortcomings of CapsNet since it was introduced. In this work, we focus on optimizing CapsNet in several aspects: the network speed i.e. training and testing times, the number of parameters in the network, the network accuracy and its generalization ability. We propose several optimizations in order to compensate for the drawbacks of CapsNet. First, we introduce the Quick-CapsNet (QCN) network with our primary focus on the network speed. QCN makes changes to the feature extractor of CapsNet and produces fewer capsules compared to the baseline network (Base-CaspsNet). It performs inference 5x faster on small-scale datasets i.e. MNIST, F-MNIST, SVHN and CIFAR-10. QCN however loses testing accuracy marginally compared to the baseline e.g. 1% for F-MNIST dataset. Our second contribution is designing a capsule-specific layer for the feature extractor of CapsNet referred to as the Convolutional Fully-Connected (CFC) layer. We employ the CFC layer into CapsNet and call this new architecture CFC-CapsNet. CFC layer is added on top of the current feature extractor to translate the feature map into capsules. This layer has two parameters: kernel size and the output dimension. We performed some experiments to explore the effect of these two parameters on the network performance. Using the CFC layer results in reducing the number of parameters, faster training and testing, and higher test accuracy. On the CIFAR-10 dataset, CFC-CapsNet gets 1.46% higher accuracy (with baseline of 71.69%) and 49% fewer number of parameters. CFC-CapsNet is 4x and 4.5x faster than Base-CapsNet on CIFAR-10 for training and testing respectively. Our third contribution includes the introduction of LE-CapsNet as a light, enhanced and resource-aware variant of CapsNet. This network contains a Primary Capsule Generator (PCG) module as well as a robust decoder. Using 3.8M weights, LE-CapsNet obtains 77.21% accuracy for the CIFAR-10 dataset while performing inference 4x faster than CapsNet. In addition, our proposed network is more robust at detecting images with affine transformations compared to CapsNet. We achieve 94.37% accuracy on the AffNIST dataset (compared to CapsNet's 90.52%). Finally, we propose a deep variant of CapsNet consisting of several capsule layers referred to as Deep Light CapsNet (DL-CasNet). In this work, we design the Capsule Summarization (CapsSum) layer to reduce the complexity of the proposed deep network by reducing the number of parameters. DL-CapsNet, while being highly accurate, employs a small number of parameters compared to the state-of-the-art CapsNet based networks. Moreover DL-CapsNet delivers faster training and inference. Using a 7-ensemble model on the CIFAR-10 dataset, we achieve a 91.29% accuracy. DL-CapsNet is among the few networks based on CapsNet that supports the CIFAR-100 dataset (68.36% test accuracy using the 7-ensemble model) and can process complex datasets with a high number of categories. / Graduate
10

Residual Capsule Network

Sree Bala Shrut Bhamidi (6990443) 13 August 2019 (has links)
<p>The Convolutional Neural Network (CNN) have shown a substantial improvement in the field of Machine Learning. But they do come with their own set of drawbacks. Capsule Networks have addressed the limitations of CNNs and have shown a great improvement by calculating the pose and transformation of the image. Deeper networks are more powerful than shallow networks but at the same time, more difficult to train. Residual Networks ease the training and have shown evidence that they can give good accuracy with considerable depth. Putting the best of Capsule Network and Residual Network together, we present Residual Capsule Network and 3-Level Residual Capsule Network, a framework that uses the best of Residual Networks and Capsule Networks. The conventional Convolutional layer in Capsule Network is replaced by skip connections like the Residual Networks to decrease the complexity of the Baseline Capsule Network and seven ensemble Capsule Network. We trained our models on MNIST and CIFAR-10 datasets and have seen a significant decrease in the number of parameters when compared to the Baseline models.</p>

Page generated in 0.0468 seconds