• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RCNX: RESIDUAL CAPSULE NEXT

Arjun Narukkanchira Anilkumar (10702419) 10 May 2021 (has links)
<div>Machine learning models are rising every day. Most of the Computer Vision oriented</div><div>machine learning models arise from Convolutional Neural Network’s(CNN) basic structure.</div><div>Machine learning developers use CNNs extensively in Image classification, Object Recognition,</div><div>and Image segmentation. Although CNN produces highly compatible models with</div><div>superior accuracy, they have their disadvantages. Estimating pose and transformation for</div><div>computer vision applications is a difficult task for CNN. The CNN’s functions are capable of</div><div>learning only shift-invariant features of an image. These limitations give machine learning</div><div>developers motivation towards generating more complex algorithms.</div><div>Search for new machine learning models led to Capsule Networks. This Capsule Network</div><div>was able to estimate objects’ pose in an image and recognize transformations to these</div><div>objects. Handwritten digit classification is the task for which capsule networks are to solve</div><div>at the initial stages. Capsule Networks outperforms all models for the MNIST dataset for</div><div>handwritten digits, but to use Capsule networks for image classification is not a straightforward</div><div>multiplication of parameters. By replacing the Capsule Network’s initial layer, a</div><div>simple Convolutional Layer, with complex architectures in CNNs, authors of Residual Capsule</div><div>Network achieved a tremendous change in capsule network applications without a high</div><div>number of parameters.</div><div>This thesis focuses on improving this recent Residual Capsule Network (RCN) to an</div><div>extent where accuracy and model size is optimal for the Image classification task with a</div><div>benchmark of the CIFAR-10 dataset. Our search for an exemplary capsule network led to</div><div>the invention of RCN2: Residual Capsule Network 2 and RCNX: Residual Capsule NeXt.</div><div>RCNX, as the next generation of RCN. They outperform existing architectures in the domain</div><div>of Capsule networks, focusing on image classification such as 3-level RCN, DCNet, DC</div><div>Net++, Capsule Network, and even outperforms compact CNNs like MobileNet V3.</div><div>RCN2 achieved an accuracy of 85.12% with 1.95 Million parameters, and RCNX achieved</div><div>89.31% accuracy with 1.58 Million parameters on the CIFAR-10 benchmark.</div>
2

HBONEXT: AN EFFICIENT DNN FOR LIGHT EDGE EMBEDDED DEVICES

Sanket Ramesh Joshi (10716561) 10 May 2021 (has links)
<div>Every year the most effective Deep learning models, CNN architectures are showcased based on their compatibility and performance on the embedded edge hardware, especially for applications like image classification. These deep learning models necessitate a significant amount of computation and memory, so they can only be used on high-performance computing systems like CPUs or GPUs. However, they often struggle to fulfill portable specifications due to resource, energy, and real-time constraints. Hardware accelerators have recently been designed to provide the computational resources that AI and machine learning tools need. These edge accelerators have high-performance hardware which helps maintain the precision needed to accomplish this mission. Furthermore, this classification dilemma that investigates channel interdependencies using either depth-wise or group-wise convolutional features, has benefited from the inclusion of Bottleneck modules. Because of its increasing use in portable applications, the classic inverted residual block, a well-known architecture technique, has gotten more recognition. This work takes it a step forward by introducing a design method for porting CNNs to low-resource embedded systems, essentially bridging the difference between deep learning models and embedded edge systems. To achieve these goals, we use closer computing strategies to reduce the computer's computational load and memory usage while retaining excellent deployment efficiency. This thesis work introduces HBONext, a mutated version of Harmonious Bottlenecks (DHbneck) combined with a Flipped version of Inverted Residual (FIR), which outperforms the current HBONet architecture in terms of accuracy and model size miniaturization. Unlike the current definition of inverted residual, this FIR block performs identity mapping and spatial transformation at its higher dimensions. The HBO solution, on the other hand, focuses on two orthogonal dimensions: spatial (H/W) contraction-expansion and later channel (C) expansion-contraction, which are both organized in a bilaterally symmetric manner. HBONext is one of those versions that was designed specifically for embedded and mobile applications. In this research work, we also show how to use NXP Bluebox 2.0 to build a real-time HBONext image classifier. The integration of the model into this hardware has been a big hit owing to the limited model size of 3 MB. The model was trained and validated using CIFAR10 dataset, which performed exceptionally well due to its smaller size and higher accuracy. The validation accuracy of the baseline HBONet architecture is 80.97%, and the model is 22 MB in size. The proposed architecture HBONext variants, on the other hand, gave a higher validation accuracy of 89.70% and a model size of 3.00 MB measured using the number of parameters. The performance metrics of HBONext architecture and its various variants are compared in the following chapters.</div>
3

Attractors of autoencoders : Memorization in neural networks / Attractors of autoencoders : Memorization in neural networks

Strandqvist, Jonas January 2020 (has links)
It is an important question in machine learning to understand how neural networks learn. This thesis sheds further light onto this by studying autoencoder neural networks which can memorize data by storing it as attractors.What this means is that an autoencoder can learn a training set and later produce parts or all of this training set even when using other inputs not belonging to this set. We seek out to illuminate the effect on how ReLU networks handle memorization when trained with different setups: with and without bias, for different widths and depths, and using two different types of training images -- from the CIFAR10 dataset and randomly generated. For this, we created controlled experiments in which we train autoencoders and compute the eigenvalues of their Jacobian matrices to discern the number of data points stored as attractors.We also manually verify and analyze these results for patterns and behavior. With this thesis we broaden the understanding of ReLU autoencoders: We find that the structure of the data has an impact on the number of attractors. For instance, we produced autoencoders where every training image became an attractor when we trained with random pictures but not with CIFAR10. Changes to depth and width on these two types of data also show different behaviour.Moreover, we observe that loss has less of an impact than expected on attractors of trained autoencoders.
4

Convolutional Neural Network Optimization Using Genetic Algorithms

Reiling, Anthony J. January 2017 (has links)
No description available.
5

AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources

Kalgaonkar, Priyank B. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.
6

Comparative Study of Classification Methods for the Mitigation of Class Imbalance Issues in Medical Imaging Applications

Kueterman, Nathan 22 June 2020 (has links)
No description available.
7

AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources

Priyank Kalgaonkar (10911822) 05 August 2021 (has links)
Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.<br>

Page generated in 0.0253 seconds