• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les crocodiles sont-ils devenus secondairement ectothermes ? : étude paléohistologique / Did crocodiles become secondarily ectothermic ? : a paleohistological approach

Legendre, Lucas 23 September 2014 (has links)
Les archosaures sont un clade de vertébrés comprenant les oiseaux, les crocodiliens, ainsi que de nombreux groupes fossiles. Ce groupe fait depuis plusieurs décennies l'objet d'un important débat parmi les paléontologues quant à l'évolution du thermométabolisme au sein de ses différentes lignées. L'hypothèse classique considère que seuls les oiseaux modernes sont endothermes, tandis que tous les autres archosaures sont ectothermes. L'histologie osseuse permet d'étudier plusieurs traits relatifs au thermométabolisme impossibles à mesurer sur des spécimens fossiles ; c'est pourquoi nous avons utilisé des caractères mesurés sur des coupes histologiques d'os longs.Nous nous sommes consacrés dans une première partie à une revue détaillée de la mesure du signal phylogénétique pour des caractères ostéohistologiques dans deux clades de vertébrés, ce qui nous a permis de mieux définir l'approche à suivre dans la construction de nos modèles prédictifs.Après une étude préliminaire consacrée à l'élaboration d'un modèle prédictif du taux de croissance osseuse, nous avons construit un modèle global capable de prédire directement le taux métabolique de nos spécimens fossiles. Nos résultats montrent que la majorité des archosaures de notre échantillonnage étaient endothermes. Cela implique que le dernier ancêtre commun des archosaures était probablement endotherme, et que les crocodiliens sont donc devenus secondairement ectothermes, probablement en réponse aux contraintes du milieu aquatique. Des études plus spécifiques sur la lignée des pseudosuchiens devraient permettre de déterminer à quel niveau de l'arbre phylogénétique s'est effectué le retour à cet état ectotherme. / Archosaurs are a clade of vertebrates that includes birds, crocodiles, and numerous fossil groups. This clade has been a matter of debate among paleontologists for decades concerning the evolution of thermometabolism in its different lineages. The classical hypothesis considers that only modern birds are true endotherms, whereas all other archosaurs are ectotherms. Bone histology allows to study several traits linked to bone growth rate and thermometabolism, otherwise impossible to estimate on fossil specimens; for this reason, we used characters measured on long bone histological sections.In the first section, we extensively reviewed the measure of phylogenetic signal for osteohistological features in two clades of vertebrates, which was then used to define the methodology for building our predictive models.After a preliminary study during which we built a predictive model for bone growth rate, we built a global model to predict the metabolic rate of our fossil specimens, using both histological features and phylogenetic information for each specimen. Our results show that a majority of archosaurs in our sample were endotherms. This implies that the last common ancestor of archosaurs was likely an endotherm, and that modern crocodiles became secondarily ectothermic, probably in response to their aquatic environment. More specific studies on pseudosuchians should allow to precisely identify the level of the phylogenetic tree at which the ectothermic state was acquired, as well as adaptive constraints behind this acquisition.
2

Élucider les facteurs génétiques à l'origine de la variabilité des populations par phénomique et génomique de masse / Elucidating the genetic basis of variation in populations by large scale phenomics and genomics

Hallin, Johan Henning 22 March 2018 (has links)
La variabilité phénotypique existante au sein d’une population est d’une importance cruciale ; elle permet l’adaptation à de nouvelles conditions par la sélection naturelle de traits bénéfiques. La variabilité phénotypique est le résultat du polymorphisme génétique de chaque individu, couplé à l’influence de divers facteurs environnementaux. Ces travaux ont pour objectif d’élucider quels sont les facteurs génétiques responsables de la variabilité phénotypique de chaque individu afin de comprendre comment celle-ci évolue de génération en génération et peut s’accentuer au-delà des prédispositions parentales. Finalement, les résultats obtenus seront utilisés pour prédire un phénotype à partir d’un génotype inconnu. Nous avons utilisé des techniques de phénomique et de génomique de haut débit pour décomposer avec une précision inédite la variabilité phénotypique d’une large population de souches diploïdes de Saccharomyces cerevisiae. Le génotype exact de plus de 7000 souches uniques a ainsi été obtenu via le croisement et le séquençage de souches haploïdes distinctes. Nous avons mesuré la capacité de croissance de ces souches et identifié les composants génétiques influant sur ce trait. De plus, nous avons identifié des « loci de caractères quantitatifs » additifs et non-additifs, et étudié la fréquence du phénomène d’hétérosis et ses mécanismes. Enfin, en utilisant les données phénotypiques et génotypiques de la même population de levures, nous avons pu prédire les traits de chaque individu avec une presque parfaite exactitude. Ces travaux ont ainsi permis d’identifier avec précision les facteurs génétiques modulant la variation phénotypique d’une population diploïde, et de prédire un trait à partir du génotype et de l’ensemble des données phénotypiques. En plus de ce projet, nous travaillons aussi sur l’identification des bases génétiques à l’origine de la non-viabilité des gamètes, ainsi que sur la compréhension des caractères complexes chez des souches hybrides intra-espèce. De par l’étude de 9000 gamètes séquencés issus de six hybrides différents, nous avons pour objectif de caractériser leur profil de recombinaison et d’observer quelle est l’influence du fond génétique sur ce dernier. De plus, nous avons caractérisé la capacité de croissance de ces gamètes dans neuf conditions environnementales différentes et nous prévoyons de disséquer l’architecture génétique de ces traits dans différents fonds génétiques. / The phenotypic variation between individuals in a population is of crucial importance. It allows populations to evolve to novel conditions by the natural selection of beneficial traits. Variation in traits can be caused by genetic or environmental factors. This work endeavors to study the genetic factors that underlie phenotypic variation in order to understand how variation can be created from one generation to the next; to know what genetic mechanisms are most prominent; to learn how variation can extend beyond the parents; and finally, to use this in order to predict phenotypes of unknown genetic constellations. We used large scale phenomics and genomics to give an unprecedented decomposition of the phenotypic variation in a large population of diploid Saccharomyces cerevisiae strains. Constructing phased outbred lines by large scale crosses of sequenced haploid strains allowed us to infer the genetic makeup of more than 7,000 colonies. We measured the growth of these strains and decomposed the phenotypic variation into its genetic components. In addition, we mapped additive and nonadditive quantitative trait loci, we investigated the occurrence of heterosis and its genetic basis, and using the same populations we used phenotypic and genetic data to predict traits with near perfect accuracy. By using the phased outbred line approach, we succeeded in giving a conclusive account of what genetic factors define phenotypic variation in a diploid population, and in accurately predicting phenotypes from genetic and phenotypic data. Beyond the phased outbred line project, I am currently investigating the genetic basis of gamete inviability and complex traits in intraspecies yeast hybrids. Using 9,000 sequenced gametes from six different hybrids we aim to characterize their recombination landscape and how the genetic background influences it. Furthermore, we have phenotyped these gametes in nine conditions and will dissect the genetic architecture of these traits across multiple genomic backgrounds.
3

Identification de facteurs génétiques et environnementaux impliqués dans le vieillissement à travers l’étude des variations naturelles de la levure / Natural variations in yeast aging reveal genetic and environmental factors

Barré, Benjamin 18 December 2018 (has links)
Le vieillissement est un processus complexe déterminé par des facteurs génétiques et environnementaux qui varie d’un individu à l’autre. Bien que le vieillissement soit la cause principale de nombreuses maladies, nos connaissances sur le sujet sont relativement limitées. Tout au long de ce travail, j’ai utilisé la levure bourgeonnante Saccharomyces cerevisiae pour identifier les facteurs génétiques et environnementaux influant sur le vieillissement et pour comprendre les interactions qu’ils entretiennent entre eux. Jusqu’à présent, les approches classiques de génétique ont permis de découvrir un certain nombre de gènes impliqués dans la régulation du vieillissement chronologique de la levure (CLS), basé sur la longévité de celle-ci en conditions non-prolifératives. Or, ces approches se sont essentiellement centrées sur des souches de laboratoire et n’ont que très peu exploité les richesses de la biodiversité. Dans une première partie, j’ai utilisé une large cohorte de levures composée de plus de 1000 souches naturelles de S. cerevisiae afin d’estimer la variabilité de longévité existant au sein de l’espèce. Leur longévité a été étudiée dans différentes conditions connues pour freiner le vieillissement : sous restriction calorique ou en présence d’un agoniste de la restriction calorique, la molécule rapamycine, qui inhibe directement la voie de signalisation TOR. Les microorganismes passent la majeure partie de leur vie dans des environnements défavorables, pauvres en ressources nutritives. Leur capacité à survivre à ces périodes de restriction (CLS) est donc primordiale. J’ai observé que les souches sauvages ont tendance à spontanément initier le programme de méiose aboutissant à la formation de spores lorsque les conditions environnementales deviennent restreintes. En revanche, les souches domestiques préfèrent entrer en quiescence, ce qui leur confère une viabilité et une résistance accrues. De plus, en ayant recours à une approche basée sur des gènes présélectionnés et à une étude d’association pangénomique, j’ai observé que la variabilité de longévité entre les différentes souches est déterminée par un large spectre de polymorphismes génétiques, tels que des mutations non-synonymes ou non-sens, et par l’absence ou la présence de certains gènes. Toutes ces composantes génétiques interagissent pleinement avec l’environnement. Dans une deuxième partie, j’ai réalisé une analyse de liaison génétique grâce à 1056 souches descendantes de deux souches parentales. La longévité (CLS) de ces 1056 souches a été mesurée dans le but d’identifier des locus de caractères quantitatifs (QTLs). Le vieillissement chronologique a été déterminé à la fois à partir d’un milieu riche, d’un milieu restreint en calories, ou en présence de rapamycine. J’ai identifié 30 QTLs distincts, certains d’entre eux sont communs et récurrents dans plusieurs environnements, tandis que d’autres sont plus spécifiques et occasionnels. Les deux QTLs principaux, associés aux gènes HPF1 et FLO11, codent tous deux des protéines du mur cellulaire, et sont jusqu’à présent non reconnus comme régulateurs du vieillissement. Etonnement, ces deux gènes contiennent des répétitions d’ADN en tandem qui s’avèrent être massivement amplifiées dans une des deux souches parentales d’origine. Alors que les allèles courts de HPF1 et FLO11 n’ont pas d’effet sur le vieillissement, les allèles longs sont relativement délétères, hormis en présence de rapamycine. Après investigation, il semble que la forme allongée de HPF1 provoque la flottaison des cellules de levure au cours de la phase de croissance, les exposants à des taux plus élevés d’oxygène. / Aging is a classical complex trait varying quantitatively among individuals and affected by both the genetic background and the environment. While aging is the highest risk factor for a large number of diseases, little is known about the underlying molecular mechanisms. Identifying the causal genetic variants underlying natural variation in longevity and understanding their interaction with the genetic background and the environment remains a major challenge. In this work, I used the budding yeast, Saccharomyces cerevisiae, to identify environmental and genetic factors contributing to aging. While extensive classical genetic studies discovered several genes involved in the regulation of chronological lifespan (CLS), which measures cell viability dynamic in non-dividing condition, using laboratory strains in standard conditions, there are only few studies exploiting variations in natural populations. In the first part, I used a large cohort of more than 1000 sequenced natural S. cerevisiae strains to provide a species-wide overview of CLS variability. Longevity was measured in different environments, including calorie restriction (CR), a natural intervention known to increase lifespan, and in the presence of rapamycin (RM), a drug that mimics CR by downregulating the TOR pathway. Unicellular microorganisms spend most of their lifetime in harsh restricted environments interrupted by short windows of growth, making CLS an important and likely adaptive trait. I found that wild strains subjected to CLS tend to trigger the meiotic developmental process leading to the formation of gametes wrapped into a very resistant cell wall. In contrast, domesticated strains tend to enter quiescence state when starved and display a tremendous variability in their survival capacity. Moreover, using both candidate gene approach and genome-wide association studies (GWAS), I demonstrated that variability in CLS is determined by a full spectrum of genetic variant that include gene presence/absence, copy number variation, non-synonymous SNPs and loss of function. All these genetic features were strongly regulated by the environment. In the second part, I performed linkage analysis using 1056 diploid segregants derived from a two parent advanced intercross. These 1056 diploid segregants were phenotyped for CLS to map quantitative trait loci (QTLs). The CLS was measured in complete media, CR and RM environments across multiple time points. I mapped 30 distinct QTLs, with some shared across different environments and time points, while others were unique to a specific condition. The two major effect size QTLs were linked with natural variation in the cell wall glycoproteins FLO11 and HPF1, previously unknown to regulate CLS. Interestingly, both genes presented massive intragenic tandem repeat expansions in one of the founder strain used in the crossing scheme. While the short versions of FLO11 and HPF1 alleles did not impact CLS, tandem repeat expansions within those genes were sufficient to confer a dominant detrimental effect that was partially buffered by rapamycin treatment. Further investigation revealed that the extended form of HPF1 makes cells floating during exponential phase, exposing them to higher oxygen rates, and leading to perturbation of redox homeostasis, activation of misfolded protein response, and alteration of multiple genes involved in methionine, ribosome and lipid biosynthesis, eventually contributing to CLS shortening. Taken together, my work provided an unprecedented overview of natural variation in CLS in a genetic model system and revealed multiple genetic and environmental factors that shape the species phenotypic variation.

Page generated in 0.2217 seconds