• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Measurement of Natural Variations in the Isotopic Content of Boron / Isotopic Content of Boron

Cragg, Charles Brian 10 1900 (has links)
An investigation was undertaken to check the difference in isotopic content between two boron samples measured earlier in this laboratory by using different methods of sample preparation from those used in the previous investigation. Yields of preparation were measured throughout. Measurements using methyl borate and boron trifluoride indicated a difference of slightly over 2% in the isotopic content of the samples, whereas the difference found in the previous investigation was 3.5%. / Thesis / Master of Science (MS)
2

Cellular Components of Naturally Varying Behaviours in the Fruit Fly, Drosophila melanogaster

Belay, Amsale Taddes 18 February 2010 (has links)
It is now well accepted, through the use of mutational studies, that genes influence behavioural variation. However, we have little knowledge of the cellular and neuronal mechanisms underlying the effects of specific genes. This thesis broadens our understanding of the neurogenetic underpinnings of naturally occurring differences in behaviour using the genetically tractable model organism Drosophila melanogaster. The thesis focuses on allelic variation at the foraging (for) gene which influences both larval and adult behaviour. In particular, for’s cellular/neural contributions to food-related behaviours and learning and memory is investigated. In the first study, we map FOR protein distribution patterns in the adult brain and use this knowledge to demonstrate a neural-specific function for the for gene in adult food-related behaviour. In the second study we demonstrate a novel role for for in the regulation of naturally existing differences in fly learning and memory in the mushroom bodies of the fly brain. In the third study, I explore FOR distribution patterns in larval tissues. I show that FOR is expressed both in neural and non-neural tissues suggesting a distributed function for FOR in food-related behaviours in the larva. In the last study, I describe naturally existing differences in fat metabolism in the Drosophila larva fat storage tissue. FOR is expressed in the fat storage tissue and may regulate lipid packaging, a trait linked to foraging. In general, my thesis is a cellular and neurogenetic analysis of natural variation in behavioural and physiological traits of D. melanogaster. The functions of FOR in food-related behaviours, nutrient physiology and cognition are conserved across taxa. The findings of this thesis should provide a framework to understand these phenomena in a wide range of organisms.
3

Cellular Components of Naturally Varying Behaviours in the Fruit Fly, Drosophila melanogaster

Belay, Amsale Taddes 18 February 2010 (has links)
It is now well accepted, through the use of mutational studies, that genes influence behavioural variation. However, we have little knowledge of the cellular and neuronal mechanisms underlying the effects of specific genes. This thesis broadens our understanding of the neurogenetic underpinnings of naturally occurring differences in behaviour using the genetically tractable model organism Drosophila melanogaster. The thesis focuses on allelic variation at the foraging (for) gene which influences both larval and adult behaviour. In particular, for’s cellular/neural contributions to food-related behaviours and learning and memory is investigated. In the first study, we map FOR protein distribution patterns in the adult brain and use this knowledge to demonstrate a neural-specific function for the for gene in adult food-related behaviour. In the second study we demonstrate a novel role for for in the regulation of naturally existing differences in fly learning and memory in the mushroom bodies of the fly brain. In the third study, I explore FOR distribution patterns in larval tissues. I show that FOR is expressed both in neural and non-neural tissues suggesting a distributed function for FOR in food-related behaviours in the larva. In the last study, I describe naturally existing differences in fat metabolism in the Drosophila larva fat storage tissue. FOR is expressed in the fat storage tissue and may regulate lipid packaging, a trait linked to foraging. In general, my thesis is a cellular and neurogenetic analysis of natural variation in behavioural and physiological traits of D. melanogaster. The functions of FOR in food-related behaviours, nutrient physiology and cognition are conserved across taxa. The findings of this thesis should provide a framework to understand these phenomena in a wide range of organisms.
4

The Influence of Natural Variations of Maternal Care on the Emotional and Behavioral Reactivity of Offspring in the Rodent Model

McFarland, Ashley M. 05 August 2008 (has links)
No description available.
5

Identification de facteurs génétiques et environnementaux impliqués dans le vieillissement à travers l’étude des variations naturelles de la levure / Natural variations in yeast aging reveal genetic and environmental factors

Barré, Benjamin 18 December 2018 (has links)
Le vieillissement est un processus complexe déterminé par des facteurs génétiques et environnementaux qui varie d’un individu à l’autre. Bien que le vieillissement soit la cause principale de nombreuses maladies, nos connaissances sur le sujet sont relativement limitées. Tout au long de ce travail, j’ai utilisé la levure bourgeonnante Saccharomyces cerevisiae pour identifier les facteurs génétiques et environnementaux influant sur le vieillissement et pour comprendre les interactions qu’ils entretiennent entre eux. Jusqu’à présent, les approches classiques de génétique ont permis de découvrir un certain nombre de gènes impliqués dans la régulation du vieillissement chronologique de la levure (CLS), basé sur la longévité de celle-ci en conditions non-prolifératives. Or, ces approches se sont essentiellement centrées sur des souches de laboratoire et n’ont que très peu exploité les richesses de la biodiversité. Dans une première partie, j’ai utilisé une large cohorte de levures composée de plus de 1000 souches naturelles de S. cerevisiae afin d’estimer la variabilité de longévité existant au sein de l’espèce. Leur longévité a été étudiée dans différentes conditions connues pour freiner le vieillissement : sous restriction calorique ou en présence d’un agoniste de la restriction calorique, la molécule rapamycine, qui inhibe directement la voie de signalisation TOR. Les microorganismes passent la majeure partie de leur vie dans des environnements défavorables, pauvres en ressources nutritives. Leur capacité à survivre à ces périodes de restriction (CLS) est donc primordiale. J’ai observé que les souches sauvages ont tendance à spontanément initier le programme de méiose aboutissant à la formation de spores lorsque les conditions environnementales deviennent restreintes. En revanche, les souches domestiques préfèrent entrer en quiescence, ce qui leur confère une viabilité et une résistance accrues. De plus, en ayant recours à une approche basée sur des gènes présélectionnés et à une étude d’association pangénomique, j’ai observé que la variabilité de longévité entre les différentes souches est déterminée par un large spectre de polymorphismes génétiques, tels que des mutations non-synonymes ou non-sens, et par l’absence ou la présence de certains gènes. Toutes ces composantes génétiques interagissent pleinement avec l’environnement. Dans une deuxième partie, j’ai réalisé une analyse de liaison génétique grâce à 1056 souches descendantes de deux souches parentales. La longévité (CLS) de ces 1056 souches a été mesurée dans le but d’identifier des locus de caractères quantitatifs (QTLs). Le vieillissement chronologique a été déterminé à la fois à partir d’un milieu riche, d’un milieu restreint en calories, ou en présence de rapamycine. J’ai identifié 30 QTLs distincts, certains d’entre eux sont communs et récurrents dans plusieurs environnements, tandis que d’autres sont plus spécifiques et occasionnels. Les deux QTLs principaux, associés aux gènes HPF1 et FLO11, codent tous deux des protéines du mur cellulaire, et sont jusqu’à présent non reconnus comme régulateurs du vieillissement. Etonnement, ces deux gènes contiennent des répétitions d’ADN en tandem qui s’avèrent être massivement amplifiées dans une des deux souches parentales d’origine. Alors que les allèles courts de HPF1 et FLO11 n’ont pas d’effet sur le vieillissement, les allèles longs sont relativement délétères, hormis en présence de rapamycine. Après investigation, il semble que la forme allongée de HPF1 provoque la flottaison des cellules de levure au cours de la phase de croissance, les exposants à des taux plus élevés d’oxygène. / Aging is a classical complex trait varying quantitatively among individuals and affected by both the genetic background and the environment. While aging is the highest risk factor for a large number of diseases, little is known about the underlying molecular mechanisms. Identifying the causal genetic variants underlying natural variation in longevity and understanding their interaction with the genetic background and the environment remains a major challenge. In this work, I used the budding yeast, Saccharomyces cerevisiae, to identify environmental and genetic factors contributing to aging. While extensive classical genetic studies discovered several genes involved in the regulation of chronological lifespan (CLS), which measures cell viability dynamic in non-dividing condition, using laboratory strains in standard conditions, there are only few studies exploiting variations in natural populations. In the first part, I used a large cohort of more than 1000 sequenced natural S. cerevisiae strains to provide a species-wide overview of CLS variability. Longevity was measured in different environments, including calorie restriction (CR), a natural intervention known to increase lifespan, and in the presence of rapamycin (RM), a drug that mimics CR by downregulating the TOR pathway. Unicellular microorganisms spend most of their lifetime in harsh restricted environments interrupted by short windows of growth, making CLS an important and likely adaptive trait. I found that wild strains subjected to CLS tend to trigger the meiotic developmental process leading to the formation of gametes wrapped into a very resistant cell wall. In contrast, domesticated strains tend to enter quiescence state when starved and display a tremendous variability in their survival capacity. Moreover, using both candidate gene approach and genome-wide association studies (GWAS), I demonstrated that variability in CLS is determined by a full spectrum of genetic variant that include gene presence/absence, copy number variation, non-synonymous SNPs and loss of function. All these genetic features were strongly regulated by the environment. In the second part, I performed linkage analysis using 1056 diploid segregants derived from a two parent advanced intercross. These 1056 diploid segregants were phenotyped for CLS to map quantitative trait loci (QTLs). The CLS was measured in complete media, CR and RM environments across multiple time points. I mapped 30 distinct QTLs, with some shared across different environments and time points, while others were unique to a specific condition. The two major effect size QTLs were linked with natural variation in the cell wall glycoproteins FLO11 and HPF1, previously unknown to regulate CLS. Interestingly, both genes presented massive intragenic tandem repeat expansions in one of the founder strain used in the crossing scheme. While the short versions of FLO11 and HPF1 alleles did not impact CLS, tandem repeat expansions within those genes were sufficient to confer a dominant detrimental effect that was partially buffered by rapamycin treatment. Further investigation revealed that the extended form of HPF1 makes cells floating during exponential phase, exposing them to higher oxygen rates, and leading to perturbation of redox homeostasis, activation of misfolded protein response, and alteration of multiple genes involved in methionine, ribosome and lipid biosynthesis, eventually contributing to CLS shortening. Taken together, my work provided an unprecedented overview of natural variation in CLS in a genetic model system and revealed multiple genetic and environmental factors that shape the species phenotypic variation.

Page generated in 0.1098 seconds