• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de méthodes de traitement d'images pour la détermination de paramètres variographiques locaux

Felder, Jean 02 December 2011 (has links) (PDF)
La géostatistique fournit de nombreux outils pour caractériser et traiter des données réparties dans l'espace. La plupart de ces outils sont basés sur l'analyse et la modélisation d'une fonction appelée variogramme qui permet de construire différents opérateurs spatiaux : le krigeage et les simulations. Les modèles variographiques sont relativement intuitifs : certains paramètres variographiques peuvent être directement interprétés en termes de caractéristiques structurales. Ces approches sont cependant limitées car elles ne permettent pas de prendre correctement en compte la structuration locale des données. Plusieurs types de modèles géostatistiques non-stationnaires existent. Ils requièrent généralement un paramétrage compliqué, peu intuitif, et ils n'apportent pas de réponse satisfaisante quant à certains de types de non-stationnarité. C'est pour répondre au besoin d'une prise en compte efficace et opérationnelle de la non-stationnarité dans un jeu de données que, dans le cadre de cette thèse, nous prenons le parti de déterminer des paramètres variographiques locaux, appelés M-Paramètres par des méthodes de traitement d'images. Notre démarche se fonde principalement sur la détermination des paramètres morphologiques de dimensions et d'orientations de structures. Il résulte de la détermination de M-Paramètres une meilleure adéquation entre modèles variographiques et caractéristiques structurales des données. Les méthodes de détermination de M-Paramètres développées ont été appliquées sur des données bathymétriques, sur des jeux de données laissant apparaître des corps géologiques complexes ou encore sur des jeux de données environnementaux, liés au domaine de la pollution en zone urbaine par exemple. Ces exemples illustrent les améliorations de résultats de traitement géostatistique obtenus avec M-Paramètres. Enfin, partant du constat que certains phénomènes ne respectent pas une propagation euclidienne, nous avons étudié l'influence du choix de la distance sur les résultats de krigeage et de simulation. En utilisant des distances géodésiques, nous avons pu obtenir des résultats d'estimation impossible à reproduire avec des distances euclidiennes.
2

Détection de structures fines par traitement d'images et apprentissage statistique : application au contrôle non destructif

Morard, Vincent 22 October 2012 (has links) (PDF)
Dans cette thèse, nous présentons de nouvelles méthodes de traitement d'images pourextraire ou rehausser les éléments fins d'une image. Pour ces opérateurs, issus de la morphologie mathématique,l'accent a été mis principalement sur la précision de détection et sur le temps de calcul,qui doivent être optimisés pour pouvoir répondre aux contraintes de temps imposées par différentesapplications industrielles. La première partie de ce mémoire présente ces méthodes, organisées enfonction de la tortuosité des objets à détecter. Nous commençons par proposer un algorithme rapidepour le calcul des ouvertures 1-D afin d'extraire des structures rectilignes des images. Puis, nous étudionsune nouvelle classe d'opérateurs rapides avec les ouvertures parcimonieuses par chemins, permettantd'analyser des structures ayant une tortuosité modérée. Enfin, nous proposons de nouveauxéléments structurants adaptatifs et des filtres connexes construits avec des attributs géodésiques etgéométriques pour extraire des structures filiformes ayant une tortuosité quelconque.Dans un second temps, nous avons développé une méthode d'analyse statistique en introduisantune nouvelle pénalisation adaptative. L'objectif consiste à créer un modèle prédictif précis, quiminimise en même temps une fonction de coût, indépendante des données. Lorsque cette fonctionde coût est liée au temps de calcul de chaque descripteur, il est alors possible de créer un modèleparcimonieux précis et qui minimise les temps de calcul. Cette méthode est une généralisation desrégressions linéaires et logistiques Ridge, Forward stagewise, Lar, ou Lasso.Les algorithmes développés dans cette thèse ont été utilisés pour trois applications industrielles,très différentes les unes des autres, mais toutes faisant intervenir une approche multidisciplinaire : letraitement d'images et l'analyse statistique. L'association de ces deux disciplines permet d'améliorerla généricité des stratégies proposées puisque les opérateurs de traitement d'images alliés à un apprentissagesupervisé ou non supervisé, permettent d'adapter le traitement à chaque application.Mots clés : Traitement d'images, morphologie mathématique, analyse statistique, caractérisation deformes, contrôles non destructifs, ouvertures parcimonieuses par chemins, region growing structuringelements, amincissements par attributs géodésiques et topologiques, adaptive coefficient shrinkage.
3

Détection de structures fines par traitement d'images et apprentissage statistique : application au contrôle non destructif / Thin structures detection by means of image processing and statistical learning : application to non-destructive testing

Morard, Vincent 22 October 2012 (has links)
Dans cette thèse, nous présentons de nouvelles méthodes de traitement d’images pourextraire ou rehausser les éléments fins d’une image. Pour ces opérateurs, issus de la morphologie mathématique,l’accent a été mis principalement sur la précision de détection et sur le temps de calcul,qui doivent être optimisés pour pouvoir répondre aux contraintes de temps imposées par différentesapplications industrielles. La première partie de ce mémoire présente ces méthodes, organisées enfonction de la tortuosité des objets à détecter. Nous commençons par proposer un algorithme rapidepour le calcul des ouvertures 1-D afin d’extraire des structures rectilignes des images. Puis, nous étudionsune nouvelle classe d’opérateurs rapides avec les ouvertures parcimonieuses par chemins, permettantd’analyser des structures ayant une tortuosité modérée. Enfin, nous proposons de nouveauxéléments structurants adaptatifs et des filtres connexes construits avec des attributs géodésiques etgéométriques pour extraire des structures filiformes ayant une tortuosité quelconque.Dans un second temps, nous avons développé une méthode d’analyse statistique en introduisantune nouvelle pénalisation adaptative. L’objectif consiste à créer un modèle prédictif précis, quiminimise en même temps une fonction de coût, indépendante des données. Lorsque cette fonctionde coût est liée au temps de calcul de chaque descripteur, il est alors possible de créer un modèleparcimonieux précis et qui minimise les temps de calcul. Cette méthode est une généralisation desrégressions linéaires et logistiques Ridge, Forward stagewise, Lar, ou Lasso.Les algorithmes développés dans cette thèse ont été utilisés pour trois applications industrielles,très différentes les unes des autres, mais toutes faisant intervenir une approche multidisciplinaire : letraitement d’images et l’analyse statistique. L’association de ces deux disciplines permet d’améliorerla généricité des stratégies proposées puisque les opérateurs de traitement d’images alliés à un apprentissagesupervisé ou non supervisé, permettent d’adapter le traitement à chaque application.Mots clés : Traitement d’images, morphologie mathématique, analyse statistique, caractérisation deformes, contrôles non destructifs, ouvertures parcimonieuses par chemins, region growing structuringelements, amincissements par attributs géodésiques et topologiques, adaptive coefficient shrinkage. / This PhD is dedicated to new image processing methods to extract or enhance thinobjects from an image. These methods stem from mathematical morphology, and they mainly focuson the accuracy of the detection and on the computation time. This second constraint is imposed bythe fact that we are dealing with high-throughput applications. The first part of this thesis presentsthese methods, organized according to the tortuosity of the objects to detect. We first propose afast algorithm for the computation of 1-D openings, used to extract thin and straight structures in theimages. Then, we study a new class of fast operators, parsimonious path openings, which can extractthin structures with moderate tortuosities. Finally, we propose new adaptive structuring elementsand new thinnings with geodesic and geometric attributes to filter out the noise and to enhance thinstructures of any tortuosity.Besides, we have developed a machine learning method by introducing a new adaptive penalization.We aim at creating a predictive model that minimizes a cost function (independent of the data)while preserving a good accuracy. When this cost function is linked to the computation time of eachfeature, the resulting models will optimize the timings, while preserving a good accuracy. This methodis a generalization of linear and logistic regressions with Ridge, Forward stagewise, Lar or Lassopenalization.The algorithms developed in this thesis have been used for three industrial applications. While theirobjectives are very different, the framework is the same (non-destructive testing) and they all involvea multidisciplinary approach (images processing and statistical analysis). The combination of thesetwo fields yields a higher flexibility in comparison with classical methods. Generic strategies are used,since image processing operators are associated to statistical learning (supervised or unsupervised)to make a specific treatment for each application.Keywords: Image processing, mathematical morphology, statistical analysis, pattern recognition,non destructive testing, parsimonious path openings, region growing structuring elements, geodesicand topologic attributes thinnings, adaptive coefficient shrinkage.

Page generated in 0.1102 seconds