• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 205
  • 60
  • 27
  • 16
  • 13
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 850
  • 186
  • 115
  • 100
  • 82
  • 73
  • 62
  • 57
  • 49
  • 47
  • 44
  • 39
  • 34
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Syntheses of amino sugars and amino alditols /

Armstrong, Robert Krick January 1958 (has links)
No description available.
32

Salts and esters of amino carbohydrates /

Maher, George G. January 1954 (has links)
No description available.
33

Hydrogenation of glycosulose bis(phenylhydrazones) : a general synthetic route to diamino sugars /

Minor, James L. January 1965 (has links)
No description available.
34

Syntheses and investigations of 2,6-dideoxysugars contained in diverse bioactive compounds

Mendlik, Matthew T., January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from second page of PDF file. Document formatted into pages; contains xix, 347 p.; also includes graphics. Includes bibliographical references (p. 183-192). Available online via OhioLINK's ETD Center
35

Adrenergic regulation of carbohydrate metabolism during exercise.

Watt, Matthew J, mikewood@deakin.edu.au January 2001 (has links)
1. This series of studies was undertaken to examine the adrenergic regulation of carbohydrate metabolism during exercise. Recreationally active males were tested during moderate to intense exercise on a stationary cycle ergometer. Venous and arterial plasma obtained from indwelling catheters was analysed for hormonal and metabolite responses, and hepatic glucose production and glucose uptake were measured using the tracer-dilution method with stable isotopes. Muscle samples were obtained by the needle biopsy technique to examine muscle glycogen utilisation and the flux of related muscle metabolites using enzymatic, fluorometric and radioisotopic techniques. 2. During moderate exercise adrenaline infusion induced a marked hyperglycemia and this was due to reduced glucose uptake rather than enhanced hepatic glucose production. The reduction in glucose uptake was most likely mediated by a decrease in glucose phosphorylation, as indicated by the accumulation of glucose 6-phosphate with adrenaline infusion. 3. The hyperglycemic response to intense exercise was prevented by the administration of α- and β-adrenergic antagonists. Adrenergic blockade was without effect on hepatic glucose production whereas glucose uptake was enhanced when compared with control subjects. These data support the notion that adrenergic mechanisms are more important in restraining glucose uptake than enhancing hepatic glucose production during intense exercise. Other glucoregulatory factors are responsible for the increase in glucose production during intense exercise. 4. Elevated plasma adrenaline levels during moderate exercise in untrained men increases skeletal muscle glycogen breakdown and PDH activation which results
36

Chromatographic separation of the products of periodic acid oxidation of carbohydrates

Ingham, John Davidson, 1927- January 1951 (has links)
No description available.
37

The carbohydrate movement between the symbionts of lichens

Hill, David J. January 1970 (has links)
No description available.
38

The conformational and nano-structural image studies of macromolecules

Lee, Imshik January 1992 (has links)
No description available.
39

Effect of unloading by tail-cast suspension on carbohydrate metabolism in skeletal muscle.

Henriksen, Erik John. January 1987 (has links)
The tail-cast suspension system was used as a ground-based model of weightlessness to study the effects of reduced weight-bearing (unloading) and attendant atrophy on carbohydrate metabolism in the rat soleus muscle. Changes in glycogen metabolism during unloading were biphasic. The initial phase, which took place during the first 24 hours, was characterized by increased glycogen concentrations, the result of decreased glycogenolysis. This glycogen accumulation in turn decreased the glycogen synthase activity ratio. These alterations were maintained thereafter. A similar glycogen increase was seen in the soleus unloaded by hypogravity. A rapid decline in glucose uptake also occurred during this initial phase of unloading, both in the absence and presence of insulin. During the second phase of this unloading response, beyond 24 hours, there was an increase in the sensitivity of the soleus to insulin for glucose uptake that coincided with the onset of muscle atrophy. However, this increased insulin sensitivity was not seen for glycogen synthesis, indicating differential regulation of these two processes by insulin. The enhanced insulin sensitivity likely resulted from an increase in the binding capacity for the hormone, resulting from no increased turnover of the insulin receptor during unloading. Additionally, the onset of increased insulin sensitivity coincided with a return to normal of basal glucose uptake, despite the continued unloading. When the 3-day unloaded soleus was reloaded, carbohydrate metabolism returned to normal after a triphasic response. Within two hours, the glycogen concentration decreased below control levels, due to increased glycogenolysis. During the second phase of reloading, from two to 24 hours, glycogen accumulated dramatically due to an enhanced capacity of the muscle for glycogenesis. Insulin sensitivity returned to normal by 24 hours of reloading. In the final phase, beyond 24 hours, glycogen decreased to control values. An uncoupling of the inverse relationship between glycogen and the activity ratio of glycogen synthase was seen beyond four hours of reloading. These effects of unloading and reloading were not due to systemic factors, as the extensor digitorum longus was unaffected. It is apparent that the unloaded soleus is a potent model with which to study the individual factors that regulate carbohydrate metabolism in skeletal muscle.
40

The synthesis of novel oligosaccharides using the glycosidase #alpha#-mannosidase

Smith, Nigel K. January 1997 (has links)
No description available.

Page generated in 0.1075 seconds