• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strength of metallurgical coke in relation to fissure formation

Sato, Hiroshi January 1999 (has links)
The size distribution and strength of metallurgical coke are factors vital for the steady and high-efficiency operation of a blast furnace, since these factors govern stack penneability. Coke strength influences the size of lump coke not only because of size degradation by impact and abrasion during transfer to and descent in the blast furnace, but also because of its influence on the fracture which takes place in the coke layer during carbonisation and the effect this has on the initial mean size and size distribution of the feed coke. Therefore, the elucidation of the relationship between coke strength and the fissure fonnation phenomena is significant. In this study, therefore, the coke strength development during carbonisation has been examined in conjunction with various parameters, such as the degree of carbonisation of the coal, namely the extent or fraction of pyrolytic reaction, and the degree of graphitisation of the coke, as well as carbonisation temperature and heating regime. The porous structure of coke has also been examined with a view to establishing a relation between the porous structure and the coking properties of the coal carbonised. The quality of coke porous structure was evaluated by parameters introduced in this study, i.e., the pore size distribution and pore rugosity factors. A poor porous structure is shown to be associated with high proportion of small pores and pores with a rough surface. These features are considered to stem from poor coking properties and the consequent poor adhesion between coal particles. An attempt has also been made to establish a mathematical model capable of predicting the degree of fissuring of coke during carbonisation by utilising the understandings obtained in this study of the coke strength development during carbonisation and the effect of coal properties on coke strength. Coke samples large enough to facilitate the observation of the degree of fissuring in relation to various coal properties and heating conditions, were made to evaluate the mathematical model and introduce the concept. The concept that fissuring takes place when developing thennal stress exceeds the developing coke strength is demonstrated to be capable to evaluate the effects of coal properties and heating conditions on the degree of fissuring observed.
2

Mechanical and Thermal Characterization of Continuous Fiber-Reinforced Pyrolysis-Derived Carbon-Matrix Composites

Lui, Donovan 01 January 2014 (has links)
Maturity of high-temperature polymer-reinforced composites defer to conventionally expensive and intensive methods in both material and manufacturing aspects. Even traditional carbon-carbon, aerogel, and ceramic approaches are highly limited by difficult manufacturing techniques and are subject to sensitive handling throughout their processing and lifetime. Despite their utility in extreme environments, the high costs of existing high-temperature composites find limited practical applicability under high-performance applications. The development of continuous fiber-reinforced pyrolysis-derived carbon-matrix composites aim to circumvent the issues surrounding the manufacturing and handling of conventional high-temperature composites. Polymer matrix composites (PMCs) have a number of attractive properties including light weight, high stiffness-to-weight and strength-to-weight ratios, ease of installation on the field, potential lower system-level cost, high overall durability and less susceptibility to environmental deterioration than conventional materials. However, since PMCs contain the polymer matrix, their applications are limited to lower temperatures. In this study, a pyrolysis approach was used to convert the matrix material of phenolic resin into carbon-matrix to improve the mechanical and thermal properties of the composites. Composite material consisting of basalt fiber and phenolic resin was pyrolyzed to produce basalt-carbon composites through a novel method in which the pyrolysis promoted in-situ carbon nanotube growth to form “fuzzy fibers”. The carbon phenolic composites were pyrolyzed to produce carbon-carbon composites. Several types of composites are examined and compared, including conventional phenolic and carbon-matrix composites. Through Raman spectroscopy and scanning electron microscopy, the composition of materials are verified before testing. Investigation into the improvements from in-situ carbon growth was conducted with an open-flame oxyacetylene test (ASTM-E285), to establish high-temperature thermal behavior, in addition to mechanical testing by three-point bending (ASTM-D790), to evaluate the mechanical and thermal properties of the pyrolyzed composites.
3

Processing and Properties of Particulate Reinforced Carbon Matrix Composites

Shen, Jacklyn Dana 27 October 2022 (has links)
Carbonization of biomass is a type of pyrolysis that allows for the formation of byproducts that have applications in many other industries [1]. In the field of materials science concerned with environmental impact intersecting with desirable material properties and performance, the process of carbonization in particular with commonplace biomass such as food waste is of great interest. In this thesis, pistachio shell was used as the organic biomass of choice for carbonization, and reinforcement was provided by titanium powder. These two materials were milled together at two different compositions and milling times. Experimental conditions consisted of replicates of three bulk samples made from uniaxially pressed powder mixtures heat treated from 800 °C up to 1200 °C in increments of 100 °C. Heat treatment occurred in a tube furnace with a heating rate of 5 °C/min up to the heat treatment temperature, holding the temperature for 1 hour, then ramping back down to room temperature, all in an inert atmosphere. XRD was performed on heat treated samples before polishing, while optical microscopy and SEM were performed after mounting and polishing. TGA was performed on the milled powders, while hardness was performed on the heat treated bulk samples after mounting and polishing. Results obtained suggested that increasing heat treatment temperature and milling time decreased carbon matrix porosity. In addition, greater amounts of titanium seemed to result in increased porosity. However, at increased temperature, more surface cracking was observed, leading to the conclusion that an excessively high temperature is detrimental to mechanical properties. Finally, rutile TiO2 was formed as a result of the heat treatment process. In considering environmental impact, cost, and mechanical properties, a balance must be maintained between higher temperature processing, duration, milling time, and porosity present due to these factors. Future work includes further investigations into processing parameters and characterization such as XPS and abrasion testing. / Master of Science / Carbonization of organic materials such as wood or nut shells can be explained in short as a decomposition that occurs when those materials are heated up without allowing them access to oxygen as in a normal combustion like a fire. Because of that, carbonization can produce useful products and materials of interest to many. Adding titanium to pistachio shell powder, performing compaction and carbonization, then further heating up those samples, resulted in composite materials consisting of mostly carbon char and particles inside that improve the properties. After testing multiple experimental conditions and analyzing them using equipment such as X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), optical microscopes, Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS), and a hardness tester, some trends in properties and structure were observed. Generally, increasing heat treatment temperature and milling time will reduce porosity in the matrix. On the other hand, decreasing amount of Ti powder added seems to reduce porosity. However, too high of a heat treatment temperature seems to have a detrimental effect on the part manufactured (i.e. surface cracking). In addition, considering processing costs and time costs could discourage one from using a very high temperature to heat treat these samples. Therefore, it is important to balance amount of energy used to heat treat, time spent, and resulting porosity of the final product for its applications. Future work should be done to further determine the effects of processing parameters by making more samples to test the properties of. Other characterization techniques like X-Ray Photoelectron Spectroscopy (XPS) and abrasion testing could be good to determine the exact makeup of the particles in the composite as well as see the sample's performance in its intended application (i.e. brake pads).
4

Mossbauer, Magnetization And Electrical Transport Studies On Iron Nanoparticles Embedded In The Carbon Matrix

Sajitha, E P 03 1900 (has links)
This thesis deals with the studies of magnetization and electrical transport properties of iron nanoparticles embedded in the carbon matrix. The synthesis and characteristics of the nanoparticle systems studied, are also presented. Carbon-iron (C-Fe) based systems are of growing interest due to their improved magnetic properties as well as in their potential application as sensors, catalysts, and in various other applications. In particular, nanocomposites of iron carbide, such as the cementite phase Fe3C, are further suited to diverse technological exploitations due to their enhanced mechanical properties and importance in ferrous metallurgy. The recent interest in magnetic nanostructures lies in the emergence of novel magnetic and transport properties with the reduction of size. As the dimension approaches the nanometer length scale, interesting size-dependent properties like enhanced coercivity, enhanced magnetic moment, super paramagnetism etc. are seen. Thermal assisted chemical vapour deposition (CVD) is used to decompose and chemically react the introduced precursors, maleic anhydride and ferrocene. This method provides relative size control over the individual particles by varying C/Fe concentration in precursors and the pyrolysis temperature during the co-deposition process. Ferrocene has been used actively for the production of nanoparticle composites and in the production of nanostructured carbon. The temperature of preparation, reaction rate, and the time duration of annealing directly effects the nanoparticle compositions. The catalytic effect of transitional elements are well documented in literature. This thesis is an effort to understand the growth of ferromagnetic nanocrystallites in carbon matrix, which undergo partial graphitization due to the catalytic effect of transitional elements. The effect of transitional metal on the degree of graphitization of the carbon matrix, morphology of the nanoparticle and the carbon matrix are studied. The phase of the ferromagnetic iron nanoparticles and the structural investigation forms part of the study. Here X-Ray diffraction (XRD) is employed to study the presence of different phases of iron in the partially graphitized carbon matrix. The matrix morphology and the particle size distribution were studied using Transmission Electron Microscopy (TEM) and High-Resolution TEM (HRTEM). The ferromagnetic states of the iron nanoparticles are investigated using Mossbauer spectroscopy. The results from these studies, are used to correlated the macroscopic properties to the microscopic studies. The enhanced magnetization, coercivity and the temperature dependence of the magnetization value is understood within the frame work of ferromagnetic Bloch law and surrounding carbon spins. The logarithmic temperature dependence of conductivity of the nanoparticle composites is analyzed in the framework of interference models as well as the many-body Kondo interaction effect. This thesis contains seven chapters: In chapter 1, a brief introduction to mesoscopic physics and the size-dependent phenomenon are given. Special attention is paid to magnetic nanoparticle and its composites, and the various finite-size effects exhibited by them are discussed in detail. The relevance of carbon matrix and its importance on the growth of iron nanoparticles with high thermal stability is also discussed. The ballistic and diffusive transport phenomena observed in low-dimensional systems are briefly discussed. The interplay of localization and various interaction effects at nanoscale are examined. In disordered metals the low temperature conductivity is dominated by the interference effects. A brief discussion is made on the conductivity in disorder systems, with the presence of magnetic impurities and how the classic many-body Kondo problem, is effected by various interactions. Chapter 2, mainly deals with the experimental techniques employed in the thesis. The thermal-assisted chemical vapour deposition setup used to decompose and chemically react the introduced organometallic precursors, for the preparation of C:Fe composites are discussed and its advantage over other preparation methods are emphasized. The method is optimized to provide relative size control over the nanoparticles composites and the phase compositions by varying C/Fe concentration in precursors and the pyrolysis temperature, during the co-deposition process. The various structural characterization tools used in the present study are summed up concisely in this chapter. The SQUID magnetometer system; its working principle and the various protocol used for the low temperature magnetization measurements are elaborated. Further, details regarding superconducting magnetic cryostat, utilized for the low temperature conductivity and magneto resistance measurements, are discussed. Films of C:Fe composites are grown on substrates to study the effect of disorder and sample size on the conductivity behaviour of the composites at low temperature. Chapter 3, presents the outcome of the structural studies undertaken on the C:Fe composites using XRD, TEM, and HRTEM. X-ray diffraction measurements performed on the powder composites reveal that, in addition to the presence of sharp diffraction peak from nanographite, peaks corresponding to the different phases of Fe are also seen. The effect of preparation temperature on the matrix morphology is revealed from the estimation of degree of graphitization. Iron carbide is the predominant phase in all the prepared composites. For low concentration of iron, iron carbide alone is present but as the percentage of iron in the samples increased other phases of iron are also seen. The microscopic studies on the prepared compositions revealed the presence of nanosized iron particles well embedded in the partially graphitized matrix. Here again, with the increase in iron percentage, agglomeration of ferromagnetic nanoparticles are seen. The kinetics of the particle growth and the filamentous nature of the carbon matrix are also discussed. Mossbauer investigation on C:Fe composites are presented in chapter 4. The measurements revealed the iron atom occupation in the crystal lattice. In the lower Fe concentration samples, the room temperature Mossbauer spectrum revealed the presence of sextet from Fe3C (cementite) phase. As the percentage of iron increased, sextet from α-Fe, Fe3O4 are also seen in some of the prepared compositions. Effect of carbon atoms on the structure and magnetic properties of the nanoparticle species are obvious from the isomer shift measurements. Chapter 5 comprises of the various magnetic properties and interactions present in small particle system such as magnetic anisotropy, coercivity, enhanced magnetization, inter-and intra-particle interactions etc. Magnetization measurements carried out in SQUID magnetometer on the C:Fe composites and carbon flakes (prepared from organic precursor, maleic anhydride alone) are presented. The enhanced magnetic properties of the nanoparticle assembly is discussed in detail. The hysteresis loops trace, with a finite coercivity at room temperature, indicates the ferromagnetic nature of the samples. At room temperature the magnetization value saturates at high magnetic field, indicating negligible effect from super paramagnetic particles on the hysteresis loop. The squareness ratio, saturation magnetization, coercivity and remanence magnetization values are analyzed in detail. The temperature dependence of magnetization shows a combination of Bloch law and Curie-Weiss behaviour, consistent with the picture of ferromagnetic clusters embedded in a carbon matrix. The Bloch’s constant is found to be larger by an order of magnitude compared to the bulk value, implying stronger dependence of magnetization with temperature. Effort to understand the enhanced magnetic moment in the light of magnetism in carbon was taken up. The proximity effect of ferromagnetic metal on the carbon and the hydrogen bonding with the dangling bonds, both studied in detail in literature, in connection with the induced magnetic moments in carbon, are invoked. In chapter 6, the different conductivity regimes are identified, to study the conduction mechanisms in composites and films. For the transport measurements pelletized samples are used for the resistivity and magneto resistance measurements. The conductivity data are analyzed based on the interplay of localization and Kondo effect in the ferromagnetic disordered system. In order to understand the effect of disorder and thickness on the Kondo problem, transport measurements are carried on thin films of C:Fe composites grown on quartz and alumina substrate. Disorder induced metal-insulator transition is observed in the prepared samples. The zero-field conductivity and magneto resistance data is fitted to variable range hopping (VRH) in strong localization regime. Chapter 7 summarizes the thesis and presents some perspectives for the future.

Page generated in 0.0552 seconds