• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis And Characterization Of New Conducting Polymer- Nano Particle Composites

Eroglu, Esra 01 January 2013 (has links) (PDF)
In this study, conjugated monomers containing fluorene units / 2-(9,9-dihexyl-2-(thiophen-2-yl)-9H-fluoren-7-yl)thiophene (TFT) and 5-(9,9-dihexyl-2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluoren-7-yl)-2,3dihydrothieno[3,4b ][1,4] dioxine (EFE) were synthesized on the basis of donor-acceptor-donor approach and their electrochemical polymerization were achieved via potential cycling. Optical and electrochemical properties of their corresponding polymers, poly(2-(9,9-dihexyl-2-(thiophen-2-yl)-9H-fluoren-7-yl)thiophene) PTFT, and poly(5-(9,9-dihexyl-2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluoren-7-yl)-2,3dihydrothieno[3,4b ][1,4] dioxine) PEFE, were investigated and it was found that polymer films exhibited quasi-reversible redox behavior (Epox= 1.10 V for PTFT, Epox = 0.70 V and 1.00 V for PEFE) accompanied with a reversible electrochromic behavior, yellow to dark green for PTFT, yellow to parliament blue for PEFE. Their band gap values (Eg) were found to be 2.36 eV and 2.26 eV for PTFT and PEFE, respectively. Furthermore, gold nanoparticles (AuNP) were prepared and their interaction with polymer films, PTFT and PEFE, were investigated using spectroscopic techniques. The fluorescence properties of the polymers and their composites, prepared by the interaction of AuNP with polymers, were also investigated.
2

Electrical And Magnetic Properties Of Polyvinylchloride - Amorphous Carbon / Iron Carbide Nanoparticle Comosites

Shekhar, Shashank 02 1900 (has links)
The UV-Visible spectra of a-C composites and nano composites have provided a very useful information about the electronic states and band structure. The UV-Visible spectra of a-C as well as nanoparticle are qualitatively similar. They do not show any absorption cutoff in wavelength (_max). In fact they are good absorbers of UV-Visible light in whole range. Composites show some absorptions which could be the combined effect of filler as we as host matrix. Since there is no _max, hence it is very unlikely to define any optical band gap. The nanoparticle is a good absorber in midinfrared compared to a-C. That may be due to presence of complicated kind of vibrational modes of carbon cased nanoparticle.Besides Fe3C also produces some additional modes. With kind of spectrum we have it is difficult to identify the different modes unambiguously for nanoparticle. The combined effects of filler as well as host polymer are reflected in both sets of composites. A new absorption is observed in a-C as well as in nanoparticle composites at 2370 cm−1 and 3462 cm−1 respectively. This peak may arise in composites due to interaction between filler and host matrix. The thermo gravimetric analysis is a useful characterization techniques for polymer and composites. It gives the information about the stability, phase change, degradation, chemical reaction and many more. The a-C composites as well as nano composites are stable up to 200_ C. These composites can be safely used for any practical purpose below this temperature. During the synthesis of composites the filler does not take part in any reaction. This fact is reflected in the DTG curve. The composites degrade in the way host polymer degrades.
3

BIODEGRADABLE HYDROGELS AND NANOCOMPOSITE POLYMERS: SYNTHESIS AND CHARACTERIZATION FOR BIOMEDICAL APPLICATIONS

Hawkins, Ashley Marie 01 January 2012 (has links)
Hydrogels are popular materials for biological applications since they exhibit properties like that of natural soft tissue and have tunable properties. Biodegradable hydrogels provide an added advantage in that they degrade in an aqueous environment thereby avoiding the need for removal after the useful lifetime. In this work, we investigated poly(β-amino ester) (PBAE) biodegradable hydrogel systems. To begin, the factors affecting the macromer synthesis procedure were studied to optimize the reproducibility of the resulting hydrogels made and create new methods of tuning the properties. Hydrogel behavior was then tuned by altering the hydrophilic/hydrophobic balance of the chemicals used in the synthesis to develop systems with linear and two-phase degradation profiles. The goal of the research was to better understand methods of controlling hydrogel properties to develop systems for several biomedical applications. Several systems with a range of properties were synthesized, and their in vitro behavior was characterized (degradation, mechanical properties, cellular response, etc.). From these studies, materials were chosen to serve as porogen materials and an outer matrix material to create a composite scaffold for tissue engineering. In most cases, a porous three dimensional scaffold is ideal for cellular growth and infiltration. In this work, a composite with a slow degrading outer matrix PBAE with fast degrading PBAE microparticles was created. First, a procedure for developing porogen particles of controlled size from a fast-degrading hydrogel material was developed. Porogen particles were then entrapped in the outer hydrogel matrix during polymerization. The resulting composite systems were degraded and the viability of these systems as tissue engineering scaffolds was studied. In a second area of work, two polymer systems, one PBAE hydrogel and one sol-gel material were altered through the addition of iron oxide nanoparticles to create materials with remote controlled properties. Iron oxide nanoparticles have the ability to heat in an alternating magnetic field due to the relaxation processes. The incorporation of these nanoscale heating sources into thermosensitive polymer systems allowed remote actuation of the physical properties. These materials would be ideal for use in applications where the system can be changed externally such as in remote controlled drug delivery.
4

Mossbauer, Magnetization And Electrical Transport Studies On Iron Nanoparticles Embedded In The Carbon Matrix

Sajitha, E P 03 1900 (has links)
This thesis deals with the studies of magnetization and electrical transport properties of iron nanoparticles embedded in the carbon matrix. The synthesis and characteristics of the nanoparticle systems studied, are also presented. Carbon-iron (C-Fe) based systems are of growing interest due to their improved magnetic properties as well as in their potential application as sensors, catalysts, and in various other applications. In particular, nanocomposites of iron carbide, such as the cementite phase Fe3C, are further suited to diverse technological exploitations due to their enhanced mechanical properties and importance in ferrous metallurgy. The recent interest in magnetic nanostructures lies in the emergence of novel magnetic and transport properties with the reduction of size. As the dimension approaches the nanometer length scale, interesting size-dependent properties like enhanced coercivity, enhanced magnetic moment, super paramagnetism etc. are seen. Thermal assisted chemical vapour deposition (CVD) is used to decompose and chemically react the introduced precursors, maleic anhydride and ferrocene. This method provides relative size control over the individual particles by varying C/Fe concentration in precursors and the pyrolysis temperature during the co-deposition process. Ferrocene has been used actively for the production of nanoparticle composites and in the production of nanostructured carbon. The temperature of preparation, reaction rate, and the time duration of annealing directly effects the nanoparticle compositions. The catalytic effect of transitional elements are well documented in literature. This thesis is an effort to understand the growth of ferromagnetic nanocrystallites in carbon matrix, which undergo partial graphitization due to the catalytic effect of transitional elements. The effect of transitional metal on the degree of graphitization of the carbon matrix, morphology of the nanoparticle and the carbon matrix are studied. The phase of the ferromagnetic iron nanoparticles and the structural investigation forms part of the study. Here X-Ray diffraction (XRD) is employed to study the presence of different phases of iron in the partially graphitized carbon matrix. The matrix morphology and the particle size distribution were studied using Transmission Electron Microscopy (TEM) and High-Resolution TEM (HRTEM). The ferromagnetic states of the iron nanoparticles are investigated using Mossbauer spectroscopy. The results from these studies, are used to correlated the macroscopic properties to the microscopic studies. The enhanced magnetization, coercivity and the temperature dependence of the magnetization value is understood within the frame work of ferromagnetic Bloch law and surrounding carbon spins. The logarithmic temperature dependence of conductivity of the nanoparticle composites is analyzed in the framework of interference models as well as the many-body Kondo interaction effect. This thesis contains seven chapters: In chapter 1, a brief introduction to mesoscopic physics and the size-dependent phenomenon are given. Special attention is paid to magnetic nanoparticle and its composites, and the various finite-size effects exhibited by them are discussed in detail. The relevance of carbon matrix and its importance on the growth of iron nanoparticles with high thermal stability is also discussed. The ballistic and diffusive transport phenomena observed in low-dimensional systems are briefly discussed. The interplay of localization and various interaction effects at nanoscale are examined. In disordered metals the low temperature conductivity is dominated by the interference effects. A brief discussion is made on the conductivity in disorder systems, with the presence of magnetic impurities and how the classic many-body Kondo problem, is effected by various interactions. Chapter 2, mainly deals with the experimental techniques employed in the thesis. The thermal-assisted chemical vapour deposition setup used to decompose and chemically react the introduced organometallic precursors, for the preparation of C:Fe composites are discussed and its advantage over other preparation methods are emphasized. The method is optimized to provide relative size control over the nanoparticles composites and the phase compositions by varying C/Fe concentration in precursors and the pyrolysis temperature, during the co-deposition process. The various structural characterization tools used in the present study are summed up concisely in this chapter. The SQUID magnetometer system; its working principle and the various protocol used for the low temperature magnetization measurements are elaborated. Further, details regarding superconducting magnetic cryostat, utilized for the low temperature conductivity and magneto resistance measurements, are discussed. Films of C:Fe composites are grown on substrates to study the effect of disorder and sample size on the conductivity behaviour of the composites at low temperature. Chapter 3, presents the outcome of the structural studies undertaken on the C:Fe composites using XRD, TEM, and HRTEM. X-ray diffraction measurements performed on the powder composites reveal that, in addition to the presence of sharp diffraction peak from nanographite, peaks corresponding to the different phases of Fe are also seen. The effect of preparation temperature on the matrix morphology is revealed from the estimation of degree of graphitization. Iron carbide is the predominant phase in all the prepared composites. For low concentration of iron, iron carbide alone is present but as the percentage of iron in the samples increased other phases of iron are also seen. The microscopic studies on the prepared compositions revealed the presence of nanosized iron particles well embedded in the partially graphitized matrix. Here again, with the increase in iron percentage, agglomeration of ferromagnetic nanoparticles are seen. The kinetics of the particle growth and the filamentous nature of the carbon matrix are also discussed. Mossbauer investigation on C:Fe composites are presented in chapter 4. The measurements revealed the iron atom occupation in the crystal lattice. In the lower Fe concentration samples, the room temperature Mossbauer spectrum revealed the presence of sextet from Fe3C (cementite) phase. As the percentage of iron increased, sextet from α-Fe, Fe3O4 are also seen in some of the prepared compositions. Effect of carbon atoms on the structure and magnetic properties of the nanoparticle species are obvious from the isomer shift measurements. Chapter 5 comprises of the various magnetic properties and interactions present in small particle system such as magnetic anisotropy, coercivity, enhanced magnetization, inter-and intra-particle interactions etc. Magnetization measurements carried out in SQUID magnetometer on the C:Fe composites and carbon flakes (prepared from organic precursor, maleic anhydride alone) are presented. The enhanced magnetic properties of the nanoparticle assembly is discussed in detail. The hysteresis loops trace, with a finite coercivity at room temperature, indicates the ferromagnetic nature of the samples. At room temperature the magnetization value saturates at high magnetic field, indicating negligible effect from super paramagnetic particles on the hysteresis loop. The squareness ratio, saturation magnetization, coercivity and remanence magnetization values are analyzed in detail. The temperature dependence of magnetization shows a combination of Bloch law and Curie-Weiss behaviour, consistent with the picture of ferromagnetic clusters embedded in a carbon matrix. The Bloch’s constant is found to be larger by an order of magnitude compared to the bulk value, implying stronger dependence of magnetization with temperature. Effort to understand the enhanced magnetic moment in the light of magnetism in carbon was taken up. The proximity effect of ferromagnetic metal on the carbon and the hydrogen bonding with the dangling bonds, both studied in detail in literature, in connection with the induced magnetic moments in carbon, are invoked. In chapter 6, the different conductivity regimes are identified, to study the conduction mechanisms in composites and films. For the transport measurements pelletized samples are used for the resistivity and magneto resistance measurements. The conductivity data are analyzed based on the interplay of localization and Kondo effect in the ferromagnetic disordered system. In order to understand the effect of disorder and thickness on the Kondo problem, transport measurements are carried on thin films of C:Fe composites grown on quartz and alumina substrate. Disorder induced metal-insulator transition is observed in the prepared samples. The zero-field conductivity and magneto resistance data is fitted to variable range hopping (VRH) in strong localization regime. Chapter 7 summarizes the thesis and presents some perspectives for the future.
5

Nanoparticles for Bio-Imaging : Magnetic Resonance Imaging and Fluorescence Imaging

Venkatesha, N January 2015 (has links) (PDF)
This thesis provides several nanomaterial systems that can be used as contrast agents in magnetic resonance imaging (MRI) and for optical fluorescence imaging. Nanoparticle systems described in this thesis fall under three categories: (a) graphene oxide-nanoparticle composites for MRI contrast agent application, (b) core-shell nanoparticles for MRI contrast agent application and (c) nanoparticle systems for both MRI and optical fluorescence imaging. In the case of graphene oxide based nano-composites, the following observations were made: (i) in the case of graphene oxide-Fe3O4 nanoparticle composite, it was observed that high extent of oxidation of the graphene oxide and large spacing between the graphene oxide sheets containing Fe3O4 nanoparticles provides the optimum structure for yielding a very high transverse proton relaxivity value, (ii) in the case of graphene oxide-Gd2O3 nanoparticle composite, it was observed that this composite exhibits high value for both longitudinal and transverse relaxivity values making it a potential materials for multi-contrast study of pathologies with a single agent, (iii) in the case of graphene oxide-CoFe2O4 nanoparticle composites, it was observed that an increase in the reflux time of the reaction mixture containing this composite led to appreciable variations in the proton relaxivity values. Transverse relaxivity value of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with increase in the reflux time. In the case of coreshell nanoparticles for MRI contrast agent application two different core-shell systems were investigated. They are MnFe2O3-Fe3O4 core-shell nanoparticles and CoFe2O4-MnFe2O4 coreshell nanoparticles. Investigations of both the core-shell nanoparticle systems revealed that the proton relaxivity value obtained in the dispersion of the core-shell nanoparticles was considerably greater than the proton relaxivity value obtained in the presence of single phase nanoparticles of the core and shell phases. Very high value of transverse relaxivity in the case core-shell nanoparticles was due to the large magnetic inhomogeneity created by the core-shell nanoparticles in the water medium surrounding it. In the case of nanoparticle systems for both MRI and optical fluorescence imaging, two different systems were investigated. They were CoFe2O4-ZnO core-shell nanoparticles and Gd doped ZnS nanoparticles [Zn1-xGdxS, x= 0.1, 0.2 and 0.3] formed on graphene oxide sheets or coated with chitosan. In the case of CoFe2O4-ZnO core-shell nanoparticles it was observed that fluorescent CoFe2O4-ZnO core-shell nanoparticles with the unique geometry in which CoFe2O4 ferrite nanoparticles agglomerates were present within larger sized hollow ZnO capsules yields very high value of transverse proton relaxivity when compared to the proton relaxivity value exhibited by the individual CoFe2O4-ZnO coreshell nanoparticles. In the case of Gd doped ZnS nanoparticles, two different systems were synthesized and the values of the longitudinal and transverse proton relaxivity obtained were compared. These systems were (i) graphene oxide- Zn1-xGdxS (x= 0.1, 0.2 and 0.3) nanoparticle composites and (ii) chitosan coated Zn1-xGdxS (x= 0.1, 0.2 and 0.3) nanoparticles. It was observed that Gd doped ZnS nanoparticles in both cases exhibit both longitudinal and transverse relaxivity values. The relaxivity values showed a clear dependence on the composition of the nanoparticles and the nanoparticle environment (presence and absence of graphene oxide). It was also observed that Gd doped ZnS nanoparticle can be used for florescence imaging.

Page generated in 0.0549 seconds