• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MODIFIED ORDERED MESOPOROUS SILICA MEMBRANES FOR CO <sub>2</sub> -N <sub>2</sub> SEPARATION

KIM, SANGIL January 2003 (has links)
No description available.
2

TOWARDS COMMERCIALIZABLE FEATURED ZEOLITES - MESOPOROUS PARTICLES, NANOPARTICLES AND BENDABLE ZEOLITE MEMBRANES

Wang, Bo January 2016 (has links)
No description available.
3

Membrane based separations of carbon dioxide and phenol under supercritical conditions

Damle, Shilpa C. 28 August 2008 (has links)
Not available / text
4

Synthesis and Charaterization of Thin Ceramic-Carbonate Dual-Phase Membranes for Carbon Dioxide Separation

January 2014 (has links)
abstract: High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes. The membranes provide selective permeation to CO2 and exhibit high permeation flux at high temperature. Research on transport mechanism demonstrates that gas transport for ceramic-carbonate dual-phase membrane is rate limited by ion transport in ceramic support. Reducing membrane thickness proves effective to improve permeation flux. This dissertation reports strategy to prepare thin ceramic-carbonate dual-phase membranes to increase CO2 permeance. The work also presents characteristics and gas permeation properties of the membranes. Thin ceramic-carbonate dual-phase membrane was constructed with an asymmetric porous support consisting of a thin small-pore ionic conducting ceramic top-layer and a large pore base support. The base support must be carbonate non-wettable to ensure formation of supported dense, thin membrane. Macroporous yttria-stabilized zirconia (YSZ) layer was prepared on large pore Bi1.5Y0.3Sm0.2O3-&#948; (BYS) base support using suspension coating method. Thin YSZ-carbonate dual-phase membrane (d-YSZ/BYS) was prepared via direct infiltrating Li/Na/K carbonate mixtures into top YSZ layers. The thin membrane of 10 &#956;m thick offered a CO2 flux 5-10 times higher than the thick dual-phase membranes. Ce0.8Sm0.2O1.9 (SDC) exhibited highest CO2 flux and long-term stability and was chosen as ceramic support for membrane performance improvement. Porous SDC layers were co-pressed on base supports using SDC and BYS powder mixtures which provided better sintering comparability and carbonate non-wettability. Thin SDC-carbonate dual-phase membrane (d-SDC/SDC60BYS40) of 150 &#956;m thick was synthesized on SDC60BYS40. CO2 permeation flux for d-SDC/SDC60BYS40 exhibited increasing dependence on temperature and partial pressure gradient. The flux was higher than other SDC-based dual-phase membranes. Reducing membrane thickness proves effective to increase CO2 permeation flux for the dual-phase membrane. / Dissertation/Thesis / Ph.D. Chemical Engineering 2014
5

Synthesis and Characterization of Transition Metal Ion-based Hydrogels with Auxiliary Carboxylate Spacer Ligands for Selective Carbon Dioxide Separation and Other Potential Applications

Al Dossary, Mona 11 1900 (has links)
Metallo-supramolecular hydrogels have interesting dynamic properties for many applications. We report a simple method for synthesizing copper-based polymer hydrogels made from nontoxic poly(methyl vinyl ether-alt-maleic anhydride) (PVM-alt-MA) in the absence or presence of added dicarboxylates, such as adipate and terephthalate. We utilize metal-polycarboxylate backbone and carboxylate spacer ligands between polymers strands engineered via non-covalent metal ion coordination. Rheological measurements revealed that the mechanical stability of the hydrogels was enhanced by the addition of supplementary dicarboxylate ligands. The optimal ratio of polymer to dicarboxylate to Cu2+ was 10:4:2.5. Our scanning electron microscope (SEM) and Cryo-SEM imaging and physical adsorption measurements revealed the formation of pores. The Brunauer–Emmett–Teller (BET) surface area of the dried hydrogels increased from 177.96 m2 g−1 in a dried hydrogel without added dicarboxylate to 646.90 and 536.44 m2 g−1 with the addition of adipate and terephthalate, respectively. The pore volume increased as well. Separation of CO2 from post-combustion flue gases is important for environmental and economic sustainability. The PVM-alt-Na-MA:adipate:Cu2+ hydrogels are promising material for post-combustion CO2 separation. At normal conditions (298 K and 1 bar), the PVM-alt-Na-MA:adipate:Cu2+ hydrogel samples with 10:4:2.5 ratio, showed notable CO2/N2 selectivity of 78.46 and a high CO2/CH4 selectivity reaching 26.09 at 1 bar. Additionally, we investigated in detail the effect of transition metal ion on the rigidity and structure of hydrogels using Al3+, Fe3+, Cu2+, Ni2+, Zn2+, and Co2+. We also studied the effect of using tricarboxylate spacer ligands such as nitrilotriacetic (NTA) and trisodium citrate or tetracarboxylate such as ethylenediaminetetraacetic acid (EDTA). It is important to mention that one of the main advantages of our facile synthesis method is being simple and can be scaled up for commercial applications. For scaling up the synthesis of hydrogels, we utilized a filling machine that is able to increase the amount of hydrogel aliquots with variable volume. Silver-based hydrogels showed significant antibacterial activity, due to the presence of silver nanoparticles. We utilized a filling machine for application of amorphous wound dressing. The optimization of the conditions of the filling enabled us to scale up the synthesis and the filling process.
6

Amine-Containing Mixed-Matrix Membranes Incorporated with Amino-Functionalized Multi-walled Carbon Nanotubes for CO2/H2 Separation

Yang, Yutong January 2019 (has links)
No description available.
7

Gas purification by short cycle pressure swing adsorption. Experimental and theoretical studies of a fixed bed adsorption process for the separation of carbon dioxide from air at ambient temperatures using molecular sieve 5A and activated charcoal adsorbents.

Ellis, David I. January 1973 (has links)
An experimental pressure swing adsorption unit has been constructed and used to investigate the separation of carbon dioxide from carbon dioxide enriched air using both an activated carbon and a type 5A molecular sieve adsorbent. Continuous, cyclic operation was achievedusing a pair of fixed bed adsorbers. At any one time the feed gas entered one bed at a high pressure and part of the purified gas was returned to the other bed at a reduced pressure to provide countercurrent regeneration of the adsorbent. The beds of adsorbent used were each nominally 0.165m diameter and Im. deep. Separations were carried out at approximately ambient temperature using air flow rates in the range 0.15 to 0.95 kg/m2s and inlet carbon dioxide concentrations'in the range 0.1 to 1.5% v/v. Adsorption pressures of 2 to 6.4 bar were examined, the desorption pressure being maintained throughout at essentially 1.0 bar. The period time was varied from 30 to 900 seconds and the revert ratio (i. e. the ratio of the product gas returned for desorption to the total feed rate to the unit) was varied from 0 to 1.0. The carbon dioxide separation efficiency was found to increase markedly as the adsorption pressure and the revert ratio were increased whereas it was relatively insensitive to variations in feed rate and, more particularly, feed concentration. The performance of the molecular sieve adsorbent was found to be very sensitive to the presence of moisture in the feed gas. In contrast the carbon dioxide efficiencies observed with Lhe activated carbon were unaffected by the presence of small amounts (circa 100 ppm) of moisture in the feed. A theoretical model has been proposed for predicting the performance of pressure swing adsorption systems of the type investigated and approximate analytical equations and more precise numerical techniques have been established to represent its solution. The approximate analytical solutions were found to give close agreement with the more precise methods examined under conditions corresponding to low values of a dimensionless period time parameter. The proposed theoretical model incorporates an effective irean mass transfer coefficient to represent the diffusion process within the adsorbent particles. Methods for estimation of the value of this coefficient based on the limiting conditions of a periodic constant surface flux or a periodic constant surface concentration are presented. The experimental performance data were analysed in terms of the proposed analytical solution to give values of the apparent solid phase mass transfer coefficient for comparison with those predicted theoretically. In general the apparent experimental values were consistently less than the predicted values. In addition the relationship between the experimental and predicted coefficients was found to be dependent on both the nature of the adsorbent and a parameter formed by the product of the revert ratio and the adsorption to desorption pressure ratio. Empirical correlating equations which incorporate this dependence are presented.
8

Novel inorganic membranes for gas separation

Iarikov, Dmitri D. 09 March 2010 (has links)
A literature survey was performed to evaluate the state-of-the-art membrane systems for CO₂/CH₄ separation which is critical in the natural gas industry. The systems that were reviewed included zeolite, carbon, polymeric, mixed matrix, amorphous silica, and supported ionic liquid membranes. Supported ionic liquid CO₂/CH₄ selective membranes were synthesized in our laboratory by applying room temperature ionic liquids (RTILs) to porous inorganic α-alumina supports. The supported ionic liquid membranes (SILMs) displayed CO₂ permeance of 1x10⁻⁹ to 3x10⁻⁸ mol m⁻² s⁻¹ Pa⁻¹ and CO₂/CH₄ selectivity of up to 50 which is comparable with the current polymeric separation systems. It is concluded that, although the RTIL membranes showed good CO₂/CH₄ selectivity, the CO₂ permeance was too low for industrial applications. A new type of SILM was prepared by dissolving 1-aminopyridinium iodide which contained amine functionality in other ionic liquids which improved the CO₂ permeance and selectivity of these membranes. The H₂ gas separation is an important process because it has many industrial applications in petroleum processing and chemical synthesis. Amorphous silica membranes for H₂ separation were prepared on hollow fiber (HF) inorganic supports using chemical vapor deposition (CVD) of tetraethyl orthosilicate (TEOS). These membranes exhibited good H₂ permeance on the order of 10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹ together with H₂/CO₂ selectivity of over 100. The separation was achieved using a new hybrid intermediate layer that was developed by depositing a mesoporous silica layer on top of γ-alumina. / Master of Science
9

Gas purification by short cycle pressure swing adsorption : experimental and theoretical studies of a fixed bed adsorption process for the separation of carbon dioxide from air at ambient temperatures using molecular sieve 5A and activated charcoal adsorbents

Ellis, David Irvine January 1973 (has links)
An experimental pressure swing adsorption unit has been constructed and used to investigate the separation of carbon dioxide from carbon dioxide enriched air using both an activated carbon and a type 5A molecular sieve adsorbent. Continuous, cyclic operation was achievedusing a pair of fixed bed adsorbers. At any one time the feed gas entered one bed at a high pressure and part of the purified gas was returned to the other bed at a reduced pressure to provide countercurrent regeneration of the adsorbent. The beds of adsorbent used were each nominally 0.165m diameter and Im. deep. Separations were carried out at approximately ambient temperature using air flow rates in the range 0.15 to 0.95 kg/m2s and inlet carbon dioxide concentrations'in the range 0.1 to 1.5% v/v. Adsorption pressures of 2 to 6.4 bar were examined, the desorption pressure being maintained throughout at essentially 1.0 bar. The period time was varied from 30 to 900 seconds and the revert ratio (i. e. the ratio of the product gas returned for desorption to the total feed rate to the unit) was varied from 0 to 1.0. The carbon dioxide separation efficiency was found to increase markedly as the adsorption pressure and the revert ratio were increased whereas it was relatively insensitive to variations in feed rate and, more particularly, feed concentration. The performance of the molecular sieve adsorbent was found to be very sensitive to the presence of moisture in the feed gas. In contrast the carbon dioxide efficiencies observed with Lhe activated carbon were unaffected by the presence of small amounts (circa 100 ppm) of moisture in the feed. A theoretical model has been proposed for predicting the performance of pressure swing adsorption systems of the type investigated and approximate analytical equations and more precise numerical techniques have been established to represent its solution. The approximate analytical solutions were found to give close agreement with the more precise methods examined under conditions corresponding to low values of a dimensionless period time parameter. The proposed theoretical model incorporates an effective irean mass transfer coefficient to represent the diffusion process within the adsorbent particles. Methods for estimation of the value of this coefficient based on the limiting conditions of a periodic constant surface flux or a periodic constant surface concentration are presented. The experimental performance data were analysed in terms of the proposed analytical solution to give values of the apparent solid phase mass transfer coefficient for comparison with those predicted theoretically. In general the apparent experimental values were consistently less than the predicted values. In addition the relationship between the experimental and predicted coefficients was found to be dependent on both the nature of the adsorbent and a parameter formed by the product of the revert ratio and the adsorption to desorption pressure ratio. Empirical correlating equations which incorporate this dependence are presented.

Page generated in 0.5126 seconds