• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 17
  • 15
  • 12
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The low-velocity impact response of thin, stiffened CFRP panels

Paran, Alexander P. January 1999 (has links)
An extensive study of into the static loading response and low-velocity impact response of plain and stiffened CFRP panels was conducted. The study investigated the impact response of the CFRP panels over a range of impact energies that include incident kinetic energies sufficiently high to cause complete penetration of the panel by the impacting mass. Static tests were also conducted by driving a hemispherical-nosed indentor into the panel up to displacements that resulted in the complete penetration of the panel by the indentor. Results from these tests suggest that the static perforation energy could predict the impact perforation energy with reasonable accuracy. A lumped-parameter mass-spring-damper model that attempted to incorporate the effects of material damage to the panel response was developed. The model was found to be sufficiently accurate in predicting the response of thin panels to static and impact loads up to the critical delamination force threshold. Assessment of the damaged panels through Penetrant-Enhanced X-Ray methods led to the identification of damage transition energy thresholds that differentiate between changes in damage mechanism. The damage transition energy thresholds were found to be constant fractions of the impact perforation energy.
2

Novel matrix resins and composites

Chaplin, Adam January 1994 (has links)
No description available.
3

The influence of stacking sequence on the strength of bonded CFRP joints

Kairouz, Kays Clement January 1991 (has links)
No description available.
4

The influence of manufacturing variables on the static and dynamic compressive strength of pre-preg moulded materials

Yap, Swee-Cheng January 1991 (has links)
Fibre reinforced plastic (FRP) composites consist of two or more components combined to give a synergistic effect for a better performance in service. One of the phases comprises layers of fibrous material while the other phase comprises of a polymer matrix. In this project, carbon fibre pre-preg material was used. All materials contain imperfections. Materials constituents and manufacturing anomalies are the main causes of faults in FRP composites. The presence of voids in FRP composites is the most common defect. The aim of this project was to determine the influence of voids on the static and dynamic compressive properties of carbon fibre reinforced plastic (CFRP) composites. The influence of voids on fatigue life and failure behaviour were also investigated.
5

Impact damage to composite materials

Matemilola, Saka Adelola January 1993 (has links)
No description available.
6

Stresses around fasteners in composite aircraft structures and effects on fatigue life

Benchekchou, Boutaina January 1994 (has links)
No description available.
7

The mechanical performance of adhesively bonded hydroxyapatite coatings

Thompson, Jonathan Ian January 1998 (has links)
No description available.
8

Dynamic response of structural steel elements post-strengthened with CFRP

Kadhim, Majid January 2017 (has links)
Structural elements in buildings and civil engineering infrastructure can often be vulnerable to various kinds of impact actions during their service life. These actions could result from various sources e.g. collision of vehicles, ships and vessels or falling masses in industrial buildings. Since, for various reasons, such accidental actions have not always been considered in the existing engineering design of buildings and civil engineering structures such as bridges etc., investigation of effective structural strengthening techniques is justified. As fibre reinforced polymer (FRP) composites have commonly been employed efficiently to strengthen steel members against static and fatigue loads, examining the FRP strengthening technique to enhance structural steelwork in impact situations is the main focus of this study. The research aims to experimentally investigate the dynamic behavioural response of axially loaded steel columns and steel beams strengthened with various carbon fibre reinforced polymer (CFRP) configurations. To achieve this goal, a series of experimental tests was implemented including testing a number of CFRP strengthened and unstrengthened steel beams and columns under static and impact loads. The experimental results show that CFRP can improve the global and local behaviour of steel members subjected to impact loads. This improvement varied depending on the CFRP configuration, the amount of CFRP and the pre-existing axial load value in the member. In order to examine all the parameters that can affect the dynamic behaviour of CFRP strengthened steel members in addition to those not included in the experimental programme, a comprehensive numerical simulation of the experimental work was carried out using a validated finite element model. Afterwards, an extensive parametric study was conducted to provide a comprehensive understanding of the behaviour of CFRP strengthened steel members subjected to impact load. The simulation results illustrate that the effectiveness of CFRP increases with high impact energies. The parametric study results have also revealed that the configurations and distributions of CFRP have a major influence on the effectiveness of the reinforcement. A detailed numerical assessment has also been performed to find the CFRP effectiveness when applied to full-scale steel columns. It has been found that strengthening with CFRP in practical quantities and configurations could prevent steel columns from failure under transverse impact loading. The strengthening effectiveness was found to be dependent on boundary conditions, impact velocity, impact mass, impact location, preloading level, impact direction, CFRP configuration, and the length and thickness of the CFRP. Based on the results obtained from the full-scale simulation, it has been found that the CFRP strengthening technique can be used efficiently and effectively at the scale of elements common in everyday building and infrastructure. This study also provides a useful database for different kinds of strengthening configurations, impact velocities and masses, boundary conditions, etc.
9

Test of concrete flanged beams reinforced with CFRP bars

Ashour, Ashraf F., Family, M. January 2006 (has links)
Tests results of three flanged and two rectangular cross-section concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars are reported. In addition, a companion concrete flanged beam reinforced with steel bars is tested for comparison purposes. The amount of CFRP reinforcement used and flange thickness were the main parameters investigated in the test specimens. One CFRP reinforced concrete rectangular beam exhibited concrete crushing failure mode, whereas the other four CFRP reinforced concrete beams failed owing to tensile rupture of CFRP bars. The ACI 440 design guide for FRP reinforced concrete members underestimated the moment capacity of beams failed owing to CFRP tensile rupture and reasonably predicted deflections of the beams tested. A simplified theoretical analysis for estimating the moment capacity of concrete flanged beams reinforced with FRP bars was developed. The experimental moment capacity of the CFRP reinforced concrete beams tested compared favourably with that predicted by the theoretical analysis developed.
10

Impact behaviour of reinforced concrete beams strengthened or repaired with carbon fibre reinforced polymer (CFRP)

Al-Farttoosi, Mahdi January 2016 (has links)
War, terrorist attacks, explosions, progressive collapse and other unforeseen circumstances have damaged many structures, including buildings and bridges in war- torn countries such as Iraq. Most of the damaged structural members, for example, beams, columns and slabs, have not totally collapsed and can be repaired. Nowadays, carbon fibre reinforced polymer (CFRP) is widely used in strengthening and retrofitting structural members. CFRP can restore the load- carrying capacity of damaged structural members to make them serviceable. The effect of using CFRP to repair the damaged beams has not been not properly addressed in the literature. This research has the aim of providing a better understanding of the behaviour of reinforced concrete beams strengthened or repaired with CFRP strip under impact loading. Experimental and analytical work were conducted in this research to investigate the performance of RC beams strengthened or repaired using CFRP. To study the impact behaviour of the CFRP reinforced concrete beams, a new heavy drop weight impact test machine has been designed and manufactured to conduct the experimental work. Twelve RC beams were tested experimentally under impact load. The experimental work was divided into two stages; stage 1 (strengthened) and stage 2 (repair). At stage 1, three pairs of beams were tested under impact loading. External bonded reinforcement (EBR) and near surface mounted (NSM) techniques were used to strengthen the RC beams to find the most effective technique. Three pairs of beams were tested in stage 2 (repair). Different degrees of damages were induced using different impact energies. NSM technique was used to repair the damaged beams using CFRP strip. Stiffness degradation method was used to assess the degree of damage in beams due to impact. The study investigated the stiffness, bending load, impact energy, deflection and mode of failure of CFRP strengthened or repaired beams under impact loading. The distribution of the stresses, strains, accelerations, inertia forces, and cracks in the beam under impact loading was also investigated in this study. Empirical equations were proposed in this research to predict the bending load and maximum deflection of the damaged and repaired beams under impact loading. For validation purposes, finite element analysis was used with the LUSAS package. The FEA results were compared with the experimental load-deflection curves and ultimate failure load results. In this research, to simulate a real situation, different models were used to simulate the bonding between the CFRP and concrete and also between steel bars and concrete. In these FEA models, the bonding between the concrete and the CFRP was modelled using the Drucker-Prager model. To simulate the bonding between steel and concrete, a joint element was used with spring constants to model the bond between steel bars and surrounding concrete. The analytical results were compared with the experimental results. In most previous research, FEA has been used to simulate the RC beams under impact loading without any damage. In this thesis, a new 3D FEA model was proposed to simulate and analyse the damaged RC beams under impact loading with different degrees of damage. The effect of the damage on concrete stiffness and the bonding between the steel bars and the concrete were investigated in FEA model. The damage was modelled by reducing the mechanical properties of the concrete and the bonding between steel bars and concrete. This thesis has contributed to improving knowledge of the behaviour of damaged beams repaired with CFRP, and the experimental work conducted, together with the numerical analysis, have provided essential data in the process of preparing a universal standard of CFRP design and construction. In the FEA model, the damage to the beams due to impact loading was successfully modelled by reducing the beam stiffness.

Page generated in 0.0562 seconds