• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 561
  • 247
  • 106
  • 89
  • 25
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1381
  • 1381
  • 248
  • 244
  • 168
  • 147
  • 143
  • 137
  • 127
  • 107
  • 104
  • 102
  • 102
  • 99
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthesis, Characterization, and Adaptability of Carbon Nanotube-Based Solid Lubricants

Church, Amelia Heather-Sarah 01 May 2010 (has links)
Solid lubricants possessing low friction coefficients, low wear rates, and long wear lives are vital for significantly increasing the life span of instruments undergoing extreme frictional wear due to harsh environments. Solid lubricants currently used in high temperatures or excess humidity, such as MoS2, WS2, graphite, or noble metals, are unable to sustain superior frictional qualities over extended amounts of time or in changing environments. To ameliorate these limiting properties, a composite solid lubricant is produced to enable the favorable frictional properties of one lubricant to overcome the lacking frictional properties of the other. This composite uses the combined materials to produce a solid lubricant that can sustain a low friction coefficient and wear rate for a longer amount of time than each individual material. MoS2 electrodeposited on to carbon nanotubes (CNTs) has a lower friction coefficient in humid (~0.16), non-humid (~0.05) and non-humid/humid cycled (~0.075-0.2) environments than either bare MoS2 or bare CNTs. Similarly, silver deposited on CNTs, by electrodeposition, electroless deposition, and sputter coating, performs better in room temperature, high temperature (500°C), and room temperature/high temperature cycling environments than either of its individual materials. Using the techniques used to produce these solid lubricant composite coatings with appealing frictional properties will provide a variety of tribological applications involving high temperature and/or high humidity environments with necessary solutions and further facilitate the improvement of solid lubricants used in other extreme environments.
52

Aperfeiçoamentos na obtenção de nanotubos de carbono com paredes simples (NTCPS) e possíveis aplicações na estocagem de energia

Maestro, Luis Fernando 17 March 2005 (has links)
Orientador: Carlos Alberto Luengo / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-04T03:18:18Z (GMT). No. of bitstreams: 1 Maestro_LuisFernando_M.pdf: 1958027 bytes, checksum: cb56dc89c2faea48a95f3fa1350d5666 (MD5) Previous issue date: 2005 / Resumo: Desde a sua descoberta em 1991, os Nanotubos de Carbono (NTC) têm atraído muito a atenção da comunidade científica, devido as suas propriedades. Neste trabalho é apresentada uma breve revisão das pesquisas em NTC e algumas definições básicas relevantes para a sua estrutura e propriedades. Em vista da utilização deste material em uma futura aplicação e devido ao interesse do grupo na área de energia, é apresentado o estado da arte do armazenamento de Hidrogênio e, em particular, no armazenamento em sólidos de grande área superficial, classe a qual os NTC pertencem. Apresentam-se as modificações realizadas em um Reator de Arco Elétrico (Forar II) para se realizar a Síntese de NTC, são relatadas as experiências e a caracterização das amostras obtidas utilizando-se Microscopia Eletrônica de Varredura e Espectroscopia Raman. / Abstract: Since their discovery in 1991 Carbon Nanotubes (CNT) have received increasing attention by the scientific community due to their properties. Here is presented a brief review of ongoing CNT research, and basic definitions useful to understand their structure and significant properties. Because of future applications in the energy area, are presented developments in Hydrogen storage, more specifically its adsorption in solids with large internal surface areas, a characteristic of CNT materials. Modifications of the existing FORAR II to obtain CNT by the electric arc method are presented, and a description of the routines employed to obtain CNT. The characterization of catalysts and CNT by Scanning Electron Microscopy and Raman Spectroscopy are presented and discussed. / Mestrado / Física da Matéria Condensada / Mestre em Física
53

Medical and technical applications of fullerenes and related materials

Reid, Douglas Grant January 1997 (has links)
No description available.
54

Carbon nanotubes for biomolecular sensing and photovoltaics

Mohamamd Ali, Mahmoudzadeh Ahmadi Nejad 11 1900 (has links)
A computational investigation of some optoelectronic applications of carbon nanotubes (CNT) is presented, including CNT-based solar cells and biosensors. The results could be used to evaluate the performance of CNT devices and clarify the necessity of further experimental research in this area. A coaxially-gated CNT field-effect transistor (CNFET) forms the basic structure of the devices modeled in this thesis. Diffusive transport is present in long-channel devices, as in our case, while the quantum mechanical effects are mainly present in the form of tunneling from Schottky-barrier contacts at the metal-CNT interfaces. Band-to-band recombination of electron-hole pairs (EHP) is assumed to be the source of electroluminescence. In a first-order approximation, protein-CNT interactions are modeled as the modification of the potential profile along the longitudinal axis of CNTs due to electrostatic coupling between partial charges, in the oxide layer of the CNFET, and the nanotube. The possibility of electronic detection is evaluated. The electroluminescence of the CNT is proposed as an optical detection scheme due to its sensitivity to the magnitude and the polarity of the charge in the oxide. The validity of the model is argued for the given models. A value for the minimum required size of a computational window in a detailed simulation is derived. The structure of an electrostatically gated p-i-n diode is simulated and investigated for photovoltaic purposes. The absorbed power from the incident light and the interaction between the nanotubes is modeled with COMSOL. The results are interpreted as a generation term and introduced to the Drift-Diffusion Equation (DDE). We have observed behavior similar to that in an experimentally-realized device. The performance of CNT-based solar cells under standard AM 1.5 sunlight conditions is evaluated in the form of an individual solar cell and also in an array of such devices. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
55

Production and characterisation of hydroxyapatite/multi-walled carbon nanotube composites

White, Ashley Ann January 2010 (has links)
Hydroxyapatite (HA) is a biologically active ceramic that is used in surgery to replace bone. While HA promotes bone growth along its surface, its mechanical properties are not sufficient for major load-bearing medical devices. Carbon nanotubes (CNTs), as one of the strongest and stiffest materials available, have the potential to strengthen and toughen HA, thus expanding the range of clinical uses for the material. Furthermore, studies have suggested that the nanotubes themselves possess some bioactive properties. This work sought to develop and characterise HA-CNT composites in four main areas: 1) production and characterisation of green materials, 2) investigation of appropriate sintering atmospheres, 3) evaluation of mechanical properties, and 4) assessment of biological response to in vitro cell culture. HA was synthesised by a precipitation reaction between Ca(OH)2 and H3PO4, and multi-walled CNTs were produced by chemical vapour deposition. Composites were produced by adding the CNTs to the Ca(OH)2 solution as the HA was precipitating. Both as-made (nfCNTs) and acid-treated CNTs (fCNTs) were used to make composites with loadings of 0.5-5 wt.% CNTs. The resulting slurry was shear mixed and then processed to make a powder. The powder was then uniaxially pressed into tablets of ~45% theoretical density. Characterisation of the green material with XRD and FTIR found that the primary phase was HA which was well hydroxylated. The powder particles were found to have a bimodal size distribution, and all materials had similar surface areas, as determined by BET. Composites made with fCNTs were found to have a better dispersion of CNTs in the HA matrix and better interaction between the HA and CNTs compared with nfCNT composites. CNTs oxidise at the high temperatures needed to sinter HA, yet water is necessary to prevent dehydroxylation and decomposition of the HA. Using 5 wt.% fCNT composite, fourteen sintering atmospheres were investigated to determine their effect on phase purity, hydroxylation, sintered density, and remaining CNT content after sintering. An atmosphere of CO + H2 bubbled through ice water resulted in optimal properties. Additionally, it was found that increasing the gas flow rate and the number of samples sintered in one batch increased CNT retention. However, this came at the expense of the density of the sintered samples, as composites with a higher CNT content were more porous. To optimise the composite microstructure for mechanical studies, six different sintering time/temperature profiles were examined to determine their effect on density (balanced with CNT retention) and grain size. HA and both nfCNT and fCNT composites with CNT loadings of 0.5, 1, 2 and 5 wt.% were produced using the optimised atmosphere and profile, and then tested to determine tensile strength (using diametral compression) and hardness, and to look for evidence of toughening. It was found that CNTs had little reinforcing effect; instead, mechanical behaviour results were mainly attributed to differences in porosity, due at least in part to the CNTs' presence. The in vitro cellular response to the materials was examined by culturing human osteoblast-like cells on HA and nfCNT (0.88 wt.%) and fCNT (3.3 wt.%) composites for 12 days. Cells were found to attach and grow well on HA and the nfCNT composite, with slightly enhanced response on the composite. The fCNT composite, on the other hand, showed a decrease in cell viability between days 1 and 12. These results were mainly attributed to the effects of a lower local pH due to remnant acid on the fCNTs and differences in material characteristics, such as CNT loading and surface roughness. This systematic study of the production and properties of HA-CNT composites has resulted in improved understanding of the production and processing of these materials and the effects of a wide range of sintering atmospheres on their characteristics. Additionally, it has yielded interesting preliminary results of their mechanical reinforcement potential and biological behaviour.
56

POLYMER FUNCTIONALIZATION FOR THE SUSPENSION OF CARBON NANOTUBES IN BULK POLYMER

Chadwick, Ryan C. 11 1900 (has links)
Carbon nanotubes have great strength, high conductivities, and very large aspect ratios. Their physical, mechanical, and electrical properties are unique and ideally suited for use in structural materials, nano-electronic devices, and as a conductive filler. The homogeneous incorporation of carbon nanotubes in bulk materials such as polymers is difficult to achieve. This is further complicated by the inhomogeneity of carbon nanotube samples. The desire to incorporate carbon nanotubes in a wide variety of devices has been the impetus for carbon nanotube chemistry over the last decade. This requires techniques for dispersal and processing, as well as methodologies for producing monodisperse samples. In Chapter 1, this thesis discusses the fundamental properties of carbon nanotubes and gives a brief overview of the state-of-the-art in carbon nanotube separation, dispersion, and the incorporation of carbon nanotubes in bulk polymers. Chapters 2, 3, and 4 outline our efforts in the area of bulk polymer suspensions; in polystyrene (Ch. 2) and in crosslinked polydimethylsiloxane elastomers (Ch. 3 and 4). Chapter 2 describes our efforts to gain an understanding of the factors limiting the graft density of polymers on the surface of carbon nanotubes, and our insights on the ability of polymer grafts to compatibilize carbon nanotubes with a host polymer. Chapter 3 discusses the application of the Piers-Rubinsztajn reaction as a method of functionalizing the surface of nanotubes with silanes, and crosslinking them within silicone rubbers. Chapter 4 outlines the development of a supramolecular strategy for the dispersion of carbon nanotubes within silicone elastomers using conjugated and di-block co-polymers. Lastly, Chapters 5 through 6 explore the initial stages of development of a “universal” polymer for the dispersion of carbon nanotubes based on highly reactive cyclooctyne monomer units (Ch. 5) and the precursor chemistry required to make this unit on sufficient scale (Ch. 6). / Thesis / Doctor of Philosophy (PhD)
57

PROCESSING OF NANOCOMPOSITES BASED ON EPOXY AND CARBON NANOTUBES

NARASIMHADEVARA, SUHASINI 27 September 2005 (has links)
No description available.
58

Colloidal Fabrication of Advanced Oxide Composite Materials for Supercapacitors

Wallar, Cameron January 2017 (has links)
With a unique blend of power and energy densities, as well as long cycling lives, electrochemical supercapacitors are finding greater application in energy storage solutions. Among candidate materials for supercapacitors, MnO2 has garnered a great deal of attention. However, its low intrinsic electrical conductivity has proven to be a serious hindrance on performance when used in supercapacitor electrodes. Efficient use of conductive additives is a demonstrated, effective method to combat this problem, however there is still a great need for improvement. Two new colloidal processing techniques have been developed to mix chemically synthesized MnO2 and conductive multi-walled carbon nanotubes (MWCNT). The first strategy involved the linking of MnO2 and MWCNT through the formation of a Schiff base. 3,4-dihydroxybenzaldehyde (DB) was used to modify MnO2, while MWCNT were dispersed with the dye New Fuchsin (NF). These compounds were selected due to the presence of molecular features previously identified as conducive to strong adsorption and good colloidal dispersion, as well as the necessary functional groups required to form a Schiff base. The second involved the use of liquid-liquid extraction, primarily in an attempt to prevent post synthesis MnO2 particle agglomeration. Lauryl gallate (LG) was used as an extracting and dispersing agent for MnO2 synthesized via the reaction between aqueous potassium permanganate (KMnO4) and 1-butanol. LG facilitated the co-dispersion and mixing of both MnO2 and MWCNT in the 1-butanol phase. V2O3 was also investigated as a replacement for MnO2, as its high intrinsic electrical conductivity gives it a potential advantage over MnO2. In each of these three projects, electrodes were produced with exceptionally high areal normalized capacitances at high active mass loadings. The MnO2-MWCNT composites were used to fabricate full asymmetric supercapacitor devices that were able to deliver a useable amount of energy. / Thesis / Master of Applied Science (MASc) / The modern world has an insatiable appetite for energy and must have access to it for stationary and mobile applications. To meet this demand, it is of paramount importance to develop new, high performance energy storage technologies. The energy requirements for different applications, however, necessitate storage devices that have suitable properties. The energy stored in a large pool of hot water is not in a suitable form to power a cellphone. The key goal of this work was to further develop one particular energy storage technology, called electrochemical supercapacitors. Novel processing techniques were developed and new materials investigated with the aim of producing supercapacitor electrodes that would exceed the performance of what is already available today. The materials that were produced exhibited very high performance and offered new insight and direction for further research in this exciting field.
59

Effect of screw configuration on the dispersion and properties of polypropylene/multiwalled carbon nanotube composite

Ezat, G.S., Kelly, Adrian L., Youseffi, Mansour, Coates, Philip D. 24 April 2019 (has links)
Yes / The effect of extruder screw configuration on the dispersion and properties of compatibilised polypropylene (PP)/multi‐walled carbon nanotube (MCNT) composite is investigated. Three principle screw designs with mainly conveying elements (medium intensity), kneading elements (high intensity), and folding elements (chaotic mixing) were used to prepare polypropylene nanocomposites containing 4wt% of maleic anhydride grafted polypropylene (MAH‐g‐PP) compatibilizer and different nanotube loadings. The effect of each screw configuration and nanotube loading on the tensile, rheological, and electrical properties of the nanocomposites were studied. The screw configurations were found to have a strong influence on the electrical resistivity while only slightly affected the tensile properties of the nanocomposites. Scanning electron microscopy examinations showed that the use of screw configuration consisting of kneading elements promoted the dispersion of nanotubes and resulted in a low electrical percolation at 2wt% of MCNT.
60

Automated Enrichment of Single-Walled Carbon Nanotubes with Optical Studies of Enriched Samples

Canning, Griffin 13 May 2013 (has links)
The design and performance of an instrument is presented whose purpose is the extraction of samples highly enriched in one species of single-walled carbon nanotubes from density gradient ultracentrifugation. This instrument extracts high purity samples which are characterized by various optical studies. The samples are found to be enriched in just a few species of nanotubes, with the major limitation to enrichment being the separation, rather than extraction. The samples are then used in optical and microscopic studies which attempt to determine the first absorption coefficient (S1) of the (6,5) species of nanotube. Initial experiments give a value of 9.2 ± 2.6 cm2 C atom-1. Future work is proposed to improve upon the experiment in an attempt to reduce possible errors

Page generated in 0.0449 seconds