• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 562
  • 247
  • 106
  • 89
  • 25
  • 20
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 1382
  • 1382
  • 248
  • 244
  • 168
  • 147
  • 144
  • 137
  • 127
  • 107
  • 104
  • 102
  • 102
  • 99
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Applications of carbon nanotubes on integrated circuits /

Zhang, Min. January 2006 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references. Also available in electronic version.
72

Vacuum Brazing of Carbon Nanotube Strands

Wu, Wei January 2009 (has links)
Carbon nanotubes (CNTs) discovered at 1991 have attracted great interest for applications in Nano-Electro-Mechanical-Systems (NEMS). However, the search for methods to join CNTs with metallic parts has been a worldwide challenge. Many efforts have been devoted to manipulating individual CNTs and joining them to each other. Joining processes so far attempted are premature and fall short of efficiency for joint quality evaluation. Thus, it has been found necessary to work on macro CNTs strands which are easy to handle via macro joining techniques. In this study, vacuum brazing technology has been developed for joining macro CNTs strands with Ni using a Ti-Ag-Cu alloy. The brazing mechanism has been confirmed as due to TiC formation at the CNTs/Ti-Ag-Cu interface. To evaluate this novel vacuum brazing technique for CNTs joining, the temperature effect on the brazing mechanism, microstructure and stoichiometry at joint interface needed to be understood. Firstly, the influence of temperature (from room temperature to 1000C) on mechanical behaviour of CNTs was well examined. The ultimate tensile strength (UTS) of CNTs was measured to be a maximum at 900C. Then, the mechanical performance of the joints was investigated from 850C to 1000C, and the fracture modes of the joints were identified. The UTS of joint also achieves maximum at 900C. Below 900C, due to little TiC formation, the bonding is weak thus leading to interfacial fracture. Above 900C, due to much TiC formation, the bonding is strong thus resulting in CNTs fracture. Furthermore, the vacuum brazing technique was applied to join CNTs to Ni contact wires used as a lamp filament. Compared to the filament joined by Ag paste or mechanical connection, the illumination of the brazed CNTs filament was stronger. The current density of the brazed filament was superior to the Ag paste connected filament. This may represent a promising way to produce energy saving lamps.
73

Vacuum Brazing of Carbon Nanotube Strands

Wu, Wei January 2009 (has links)
Carbon nanotubes (CNTs) discovered at 1991 have attracted great interest for applications in Nano-Electro-Mechanical-Systems (NEMS). However, the search for methods to join CNTs with metallic parts has been a worldwide challenge. Many efforts have been devoted to manipulating individual CNTs and joining them to each other. Joining processes so far attempted are premature and fall short of efficiency for joint quality evaluation. Thus, it has been found necessary to work on macro CNTs strands which are easy to handle via macro joining techniques. In this study, vacuum brazing technology has been developed for joining macro CNTs strands with Ni using a Ti-Ag-Cu alloy. The brazing mechanism has been confirmed as due to TiC formation at the CNTs/Ti-Ag-Cu interface. To evaluate this novel vacuum brazing technique for CNTs joining, the temperature effect on the brazing mechanism, microstructure and stoichiometry at joint interface needed to be understood. Firstly, the influence of temperature (from room temperature to 1000C) on mechanical behaviour of CNTs was well examined. The ultimate tensile strength (UTS) of CNTs was measured to be a maximum at 900C. Then, the mechanical performance of the joints was investigated from 850C to 1000C, and the fracture modes of the joints were identified. The UTS of joint also achieves maximum at 900C. Below 900C, due to little TiC formation, the bonding is weak thus leading to interfacial fracture. Above 900C, due to much TiC formation, the bonding is strong thus resulting in CNTs fracture. Furthermore, the vacuum brazing technique was applied to join CNTs to Ni contact wires used as a lamp filament. Compared to the filament joined by Ag paste or mechanical connection, the illumination of the brazed CNTs filament was stronger. The current density of the brazed filament was superior to the Ag paste connected filament. This may represent a promising way to produce energy saving lamps.
74

Single-phase forced convection in a microchannel with carbon nanotubes for electronic cooling applications

Dietz, Carter Reynolds 10 July 2007 (has links)
A comparative study was conducted to determine whether it would be advantageous to grow carbon nanotubes on the bottom surface of anisotropically-etched silicon microchannels to facilitate greater heat removal in electronic cooling applications. The effect of the samples was evaluated based on the fluid temperature rise through the channels, the silicon surface temperature increase above ambient, and the pressure drop. The height and deposition pattern of the nanotubes were the parameters investigated in this study. The working fluid, water, was passed through the microchannels at two different volumetric flow rates (16 mL/min and 28 mL/min). Additionally, two different heat fluxes were applied to the backside of the microchannel (10 W/cm2 and 30 W/cm2). Extensive validation of the baseline channels was carried out using a numerical model, a resistor network model, and repeatability tests. Finally, the maximum enhancement when using carbon nanotubes under single-phase, laminar, internal, forced convection was investigated using basic principles in regard to the additional surface area created by the carbon nanotubes, as well as their high thermal conductivity. For the devices tested, the samples with carbon nanotubes not only had a higher pressure drop, but also had a higher surface temperature. Therefore, the baseline samples had the best performance. Furthermore, based on a basic principles investigation, the increase to thermal performance gained by increasing the surface area with CNTs is overshadowed by the decrease in mass flow rate for a fixed pressure drop. The analysis suggests that the limiting factor for heat transfer in single-phase, laminar pressure driven flows is not convection heat transfer resistance, but the bulk resistance of the fluid.
75

Characterization of Nanoscale Reinforced Polymer Composites as Active Materials

Deshmukh, Sujay 2010 December 1900 (has links)
Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical response of these materials are limited. Previous studies have shown marginal improvements in the electromechanical response of already electroactive polymers (EAPs) with addition of SWNTs. However, in general, disadvantages of EAPs such as high actuation electric field, low blocked stress and low work capacity remain unaddressed. This dissertation targets a comprehensive investigation of the electromechanical response of SWNT-based polymer nanocomposites. Specifically, the study focuses on incorporating SWNTs in three polymeric matrices: a non-polar amorphous polyimide (CP2), a polar amorphous polyimide ((-CN) APB-ODPA), and a highly polar semicrystalline polymer (PVDF). In the first step, emergence of an electrostrictive response is discovered in the non-polar polyimide CP2 in the presence of SWNTs. Transverse and longitudinal electrostrictive coefficients are measured to be six orders of magnitude higher than those of known electrostrictive polymers like polyurethane and P(VDF-TrFE) at less than 1/100th of the actuation electric fields. Next, the effect of the polymer matrix on the electrostrictive response is studied by focusing on the polar (-CN) APB-ODPA. A transverse electrostriction coefficient of 1.5 m2/MV2 is measured for 1 vol percent SWNT- (-CN) APB-ODPA, about twice the value found for 1 vol percent SWNT-CP2. The high value is attributed to higher dipole moment of the (-CN) APB-ODPA molecule and strong non-covalent interaction between the SWNTs and (-CN) APB-ODPA matrix. Finally, polyvinylidene fluoride (PVDF) matrix is selected as a means to optimize the electrostrictive response, since PVDF demonstrates both a high dipole moment and a strong non-covalent interaction with the SWNTs. SWNT-PVDF nanocomposites fared better than SWNT-CP2 nanocomposites but had comparable response to SWNT-(-CN) APB-ODPA nanocomposites. This was attributed to comparable polarization in both the polar nanocomposite systems. To maximize the SWNT-PVDF response, SWNT-PVDF samples were stretched leading to increase in the total polarization of the nanocomposite samples and decrease in the conductive losses. However, the dielectric constant also decreased after stretching due to disruption of the SWNT network, resulting in a decrease of the electrostrictive response.
76

Investigation of the structure-property-processing relationships in paper and carbon nanotube composite materials

Muhlbauer, Rachel Lynn 21 September 2015 (has links)
In this research, multiwalled carbon nanotube (MWNT) and paper composite materials were fabricated by dropcasting aqueous dispersions containing MWNTs onto filter paper using vacuum filtration, a highly unidirectional drying technique. By varying the pore size of the paper backbone as well as the number of deposited MWNT layers, composites with distinct architectures and properties were created. This thesis provides numerous examples that show how the processing methodology used influences the location of the MWNTs, the amount of MWNTs deposited, and the interaction between the MWNTs and the paper backbone. These three factors work in tandem to form the structures and properties presented. Understanding how the structures and properties come about allows for the tailorability of these composites for different applications and devices. The pore size of the backbone material combined with the directionality of the drying methodology controlled the location of MWNT deposition. MWNT deposition occurred in three ways: on the paper surface only, within the paper material only, or combined surface and internal deposition. By varying the number of deposition steps, the properties of the composite could be altered in the location of deposition. Surface charge, dispersion concentration, paper pore size, drying methodology, MWNT length, the number of deposited MWNT layers, and post-processing techniques were all factors studied in this thesis which could successfully vary the interaction between the MWNTs and between the MWNT and paper materials and, ultimately, alter the properties of the composite. Regardless of the processing methodology employed and the starting materials used, structure and property evolutions in the composite materials were characterized using impedance spectroscopy, optical microscopy, scanning electron microscopy, and Current-AFM. Combining equivalent circuit fitting of the impedance data with the information obtained from the imaging techniques allowed for the elucidation of structural mechanisms which contribute to the electronic response measured for each composite. An overall equivalent circuit was built for each composite plane which could then be used to extract the electrical properties of the individual conduction mechanisms within the composite. In the in-plane, the electrical properties of the paper backbone, MWNT-MWNT junctions, MWNT bundles, and MWNT curved bundles could be determined. In the thru-plane, the electrical properties within the paper thickness, either paper-dominated or MWNT-dominated, could be measured. The resistance through the thickness of a bulk MWNT surface network could be also measured when the density of the MWNT network is sufficiently high.
77

Carbon nanotubes as electron gun sources

Mann, Mark January 2008 (has links)
No description available.
78

Carbon nanotube fibres for electrical wiring applications

Łękawa-Raus, Agnieszka Ewa January 2013 (has links)
No description available.
79

Electrical conduction in macroscopic carbon nanotube assemblies

Fraser, Iain Stuart January 2011 (has links)
No description available.
80

Optimisation of growth of carbon nanotubes by thermal chemical vapour deposition using in-situ mass spectroscopy

Kim, Seongmin January 2009 (has links)
No description available.

Page generated in 0.0479 seconds