• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect Of Electric Field On Polymer Film Thickness

Lee, Kang-Chaung 17 July 2003 (has links)
none
2

Characterization of Nanoscale Reinforced Polymer Composites as Active Materials

Deshmukh, Sujay 2010 December 1900 (has links)
Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical response of these materials are limited. Previous studies have shown marginal improvements in the electromechanical response of already electroactive polymers (EAPs) with addition of SWNTs. However, in general, disadvantages of EAPs such as high actuation electric field, low blocked stress and low work capacity remain unaddressed. This dissertation targets a comprehensive investigation of the electromechanical response of SWNT-based polymer nanocomposites. Specifically, the study focuses on incorporating SWNTs in three polymeric matrices: a non-polar amorphous polyimide (CP2), a polar amorphous polyimide ((-CN) APB-ODPA), and a highly polar semicrystalline polymer (PVDF). In the first step, emergence of an electrostrictive response is discovered in the non-polar polyimide CP2 in the presence of SWNTs. Transverse and longitudinal electrostrictive coefficients are measured to be six orders of magnitude higher than those of known electrostrictive polymers like polyurethane and P(VDF-TrFE) at less than 1/100th of the actuation electric fields. Next, the effect of the polymer matrix on the electrostrictive response is studied by focusing on the polar (-CN) APB-ODPA. A transverse electrostriction coefficient of 1.5 m2/MV2 is measured for 1 vol percent SWNT- (-CN) APB-ODPA, about twice the value found for 1 vol percent SWNT-CP2. The high value is attributed to higher dipole moment of the (-CN) APB-ODPA molecule and strong non-covalent interaction between the SWNTs and (-CN) APB-ODPA matrix. Finally, polyvinylidene fluoride (PVDF) matrix is selected as a means to optimize the electrostrictive response, since PVDF demonstrates both a high dipole moment and a strong non-covalent interaction with the SWNTs. SWNT-PVDF nanocomposites fared better than SWNT-CP2 nanocomposites but had comparable response to SWNT-(-CN) APB-ODPA nanocomposites. This was attributed to comparable polarization in both the polar nanocomposite systems. To maximize the SWNT-PVDF response, SWNT-PVDF samples were stretched leading to increase in the total polarization of the nanocomposite samples and decrease in the conductive losses. However, the dielectric constant also decreased after stretching due to disruption of the SWNT network, resulting in a decrease of the electrostrictive response.
3

Electrostriction-Enhanced Piezoelectricity in Ferroelectric Polymers

Rui, Guanchun 26 May 2023 (has links)
No description available.
4

Electromechanical Characterization of Poly(Dimethyl Siloxane) Based Electroactive Polymers

Parulkar, Wrutu Deepak 01 January 2005 (has links)
The main objectives of this thesis are 1) to evaluate the effect of cross-linking polar cyano phenyl (CN) groups on poly (dimethyl siloxane) (PDMS) and 2) to characterize the electromechanical properties of the resulting CN-PDMS blend as an electroactive actuator. Materials responding to an external stimulus are referred to as electroactive materials. There are several phenomena, which govern the mechanism in these materials, such as piezoelectricity, Maxwell's effect, ferroelectricity, electrostriction to name a few. These electroactive materials can be employed in several applications such as biomedical devices, robots, MEMs, aerospace vehicles, where the application is governed by the specific mechanism. However in order for the materials to be used effectively, they need to be thoroughly characterized to understand their behavior under factors like electric field, temperature, frequency and time.The present work focuses on developing an electroactive actuator, which has tailorable properties, allowing a wide operational temperature window from -100°C to 200°C and stability in harsh conditions. The characterization of the CN-PDMS polymer blend is done in two folds. First the physical properties of the polymer system are characterized by performing tests such as Dielectric Spectroscopy, Differential Scanning Calorimetery and Thermally Stimulated Current measurement. These techniques offer complete understanding of the structure-property relationship and effects of the functional groups on the dielectric and relaxation behavior of the polymer. The Dielectric Spectroscopy and the Thermally Stimulated Current analysis are used to elucidate the primary and the secondary relaxations, such as molecular mobility, interfacial polarization and dipolar relaxation. Dielectric Spectroscopy reveals that the molecular weight of PDMS does not affect the dielectric permittivity of the polymer blend. Also, Dielectric Spectroscopy clarifies the role of the CN polar group in the polarization of the CN-PDMS blend, inducing electromechanical strain in the polymer blend through electrostriction.The Differential Scanning Calorimetery is used to quantify the thermal behavior of the CN-PDMS polymer blend by quantifying properties such as melting temperature (Tm) and re-crystallization temperature of the PDMS polymer cross-linked with CN functional group. Results reveal that the thermal characteristics of the blend are not affected when PDMS is cross-linked with the functional CN moieties, meaning CN-PDMS maintains the advantages of PDMS in terms of stability towards harsh conditions, wide operating temperature and resistance to ultraviolet radiations.Following the physical characterization, electromechanical characterization of the CN-PDMS polymer blend is done to assess the electromechanical strain induced in the blend in response to electric field. The electromechanical strain is studied in two configurations; the electromechanical strain induced along the length of the polymer blend and induced through the thickness of the blend. These strain measurements are performed by applying both direct current as well as alternating current electric fields, and the induced electromechanical strain is studied as a function of amplitude and frequency of the electric field as well as the time of application of the electric field. The mechanism behind the development of the electromechanical strain and the nature of the strain under electric field is elucidated. The performance of the electroactive polymer is compared with several other polymeric actuators such as PVDF and PVDF-TrFE, polyurethane based actuators and ionomers. Comparison gives favorable results in terms of strains. In addition, CN-PDMS polymer system has the advantage of allowing control of processing of the blend, which is not present in all the other commercial electroactive polymers. The maximum electromechanical strain yielded along the length of the CN-PDMS polymer blend is 1.74 % when an electric field of 0.2MV/m is applied along the length of the polymer. Through the thickness, the maximum induced strain is 0.12 % for an electric field of 0.8 MV/m. Based on the nature of the strain yielded it is observed that the strain induced in the CN-PDMS blend is consistently proportional to the square of the electric field (E2). Moreover, the strain is driven by the concentration of the dipolar moieties (CN) present in the polymer blend.All the above-mentioned techniques used for thermal and electromechanical characterization of the CN-PDMS polymer blend illustrate the electrostrictive nature of the polymer under the study.
5

Studies of the surface treatment effect for the optoelectronic properties of cholesteric blue phase liquid crystals

Hsieh, Cheng-Wei 26 August 2011 (has links)
In this study, we researched three kinds of surface treatment (no surface treatment, homogeneous alignment (HA) and vertical alignment (VA)) effect for the optoelectronic properties of cholesteric blue phase liquid crystals (BPLCs). We demonstrate the surface treatments have influence on the temperature range of BPLCs. The VA-BPLC possesses the widest temperature range, about 6.0 ¢J. The temperature range of both no surface treatment BPLC and HA-BPLC are about 5.5 ¢J. In the process of cooling, the surface treatments will restrain the change of the pitch of BPLC. Besides, surface treatment will let the crystalline of BPLC shipshape, so that it can reduce the scattering of the reflection light of BPLC. In the vertical electric field, the reflection wavelength of BPLC will be red-shift when the applied voltage increased. The reflection wavelength of the HA-BPLC can be tuned about 90 nm. The reflection wavelength of the VA-BPLC can be tuned about 120 nm. We have demonstrated the treatment of vertical alignment will reduce the operating voltage of BPLC.
6

Formulation de matériaux électrostrictifs par voie émulsion pour la récupération d'énergie / Emulsion formulation of electrostrictive materials for energy harvesting devices

Luna Cornejo, Ollin Alan 05 February 2016 (has links)
L’objectif de ces travaux est le développement de réseaux de nanoparticules conductrices telles que les nanotubes de carbone (CNT) ou feuillets de graphene dans une matrice polymère élastique faite de polydimethylsiloxane (PDMS). Une approche par voie émulsion est utilisée pour contrôler de façon précise la structure interne des matériaux. Les dispersions de CNT ou de graphène sont incorporées dans la phase continue d’une émulsion directe composée de gouttelettes de PDMS dans l’eau. Après évaporation, les nanoparticules s’agrègent au niveau de bords de Plateau pour former de réseaux dont la morphologie dépend de la taille de gouttelettes. Les propriétés diélectriques de ces matériaux sont contrôlées par la taille de gouttelettes, la concentration de charges et leur état d’agrégation. L’optimisation de leviers de formulation permet d’atteindre des valeurs de permittivité diélectrique très élevées (ϵ'r≈104 à 100Hz). De plus, nous avons développé une méthode expérimentale adaptée et précise afin d’étudier les propriétés diélectriques du matériau soumis à une contrainte mécanique (i.e. électrostriction). Les propriétés d’électrostriction des matériaux sont étudiées et nous obtenons des coefficients d’électrostriction très élevée (M33 ≈10-11 m2/V2 à 100Hz). Cette valeur est à ce jour et à notre connaissance la plus élevée dans la littérature. Les matériaux développés au cours de ces travaux peuvent être utilisés dans des capacités variables pour la conversion d’énergie mécanique en énergie électrique. Les matériaux électrostrictifs développés dans cette thèse sont donc des candidats potentiels pour des applications de récupération d’énergie vibratoire, cependant l’optimisation de certains paramètres reste à étudier. / The aim of this work is to develop near percolated networks of conductive nanoparticles such as carbon nanotubes (CNT) or graphenesheets within an elastic polymer matrix, such as polydimethylsiloxane (PDMS). A novel emulsion formulation route is employed to achieve a fine control over the inner structure of the materials. Graphene or CNT aqueous dispersions are integrated in the continuous phase of an emulsion made of PDMS droplets in water. After water removal, the nanoparticles are segregated in between the PDMS droplets at the Plateau borders of the emulsion. The morphology of the networks formed by the particles is controlled by the size of the emulsion droplets. The dielectrics properties of such materials are governed by (i) the droplets size, (ii) the filler concentration and (iii) the aggregation state. The optimization of such factors by the emulsion approach leads to giant dielectric permittivity (ϵ'r≈104 à 100Hz). In addition, we developed accurate characterization devices to study the material dielectric properties in response to a mechanical stress (i.e. electrostriction). Particularly high electrostrictive coefficients of M33 ≈ 10-11 m2/V2 at 100Hz are measured. To our knowledge, these are the highest values in the literature to date. The electrostrictive materials developed in the present work can be implemented in variable capacitors for conversion of mechanical energy into electrical energy. They are promising candidates for ambient mechanical energy harvesting; however, the optimization of some parameters remains to be studied.
7

Polyuréthanes électrostrictifs et nanocomposites : caractérisation et analyse des mécanismes de couplages électromécaniques

Wongtimnoi, Komkrisd 19 December 2011 (has links) (PDF)
Depuis quelques années on s'intéresse aux actionneurs base polymères, souvent appelés polymères électroactifs électroniques (EAPS) pour intégrer dans des microsystèmes électromécaniques (MEMS). Trois mécanismes sont à l'origine du couplage électromécanique : (i) la piézoélectricité qui apparait dans certaines phases cristallines, (ii) la force "de Maxwell" lorsqu'un champ électrique aux bornes du condensateur constitué d'un polymère souples placé entre deux électrodes, et (iii) l'électrostriction, phénomène intrinsèque aux matériaux polaires, mal connu. Les deux derniers se traduisent par une dépendance quadratique de la déformation macroscopique avec le champ électrique appliqué. Parmi les EAPs électrostrictifs, on cite souvent certains polyuréthanes (PU) qui a conduit à ce choix pour ce travail de thèse. Une première partie a consisté à analyser en détail l'électrostriction de 3 PUs, copolymères à blocs de deux types d'unités de répétition, les unes conduisant à des segments rigides très polaires, les autres à des segments souples peu polaires. La séparation de phase qui apparait lors de la mise en œuvre de ces PUs (contenant des fractions différentes de segments souples et rigides) semble propice à l'apparition de leur électrostriction. C'est ce qu'indique une modélisation récemment proposée qui prédit un facteur de près de 1000 entre forces de Maxwell (ici négligeables) et électrostriction. Le comportement des matériaux résultent clairement de la compétition entre contraintes d'origine électrostatique (dipôles des phases polaires dans un gradient de champ électrique) et contraintes mécaniques liées à la rigidité des phases. L'influence systématique de l'épaisseur des films sur leur activité électromagnétique a été rendue compte: les films minces présentent une plus faible déformation à champ électrique donné que les films plus épais. Les films obtenus par évaporation du solvant utilisé pour dissoudre les PU présentent probablement un gradient de microstructure : en surface, l'évaporation rapide limite la séparation de phase, alors qu'elle est plus avancée à cœur. C'est cohérent avec la modélisation reposant sur la présence de gradient de constante diélectrique au sein des films. Dans une dernière partie, on a cherché à augmenter encore l'électrostriction de ces matériaux en dispersant des particules conductrices à conduction électronique, de taille nanométrique (noir de carbone et nanotubes de carbone). On observe trois effets, l'un correspondant à l'augmentation de la constante diélectrique apparente (celle diverge au seuil de percolation), et un deuxième effet à une augmentation des forces d'attraction locales. En revanche, le troisième effet qui contrecarre les forces d'origine électrostatique puisqu'il résulte de l'augmentation de la rigidité dû à la présence des particules rigides. Là encore, la compétition entre contraintes électrostatique et mécanique conduit à un optimum en termes de fraction volumique de particules renforçantes.
8

Liquid crystal blue phase for electro-optic displays

Tian, Linan January 2014 (has links)
Liquid crystals are a vast and diverse class of materials which ranges from fluids made up of simple rods, polymers and solutions, to elastomers and biological organisms. Liquid crystal phases are neither crystalline, nor a ‘normal’ isotropic liquid, but lie somewhere in between these two common states of matter. Liquid crystals have found enormous use in display devices due to their electro-optic properties. In this thesis, the optical and electro-optical properties of some chiral liquid crystalline phases are studied. The optical and electro-optical behaviour of liquid crystalline blue phases has been investigated via a detailed analysis of the reflection spectrum from thin, vertical field (VF) cells. Spectral analysis in this thesis was performed using a numerical fitting technique based on the Berreman 4x4 matrix method. The validity of the technique was proved through comparisons of independent measurements with the calculated physical parameters. A novel Kerr effect measurement method was proposed in this thesis and a known material was used to verify this new method. The Kerr constant together with its dispersion relation was measured using a white light source. An unusually large Kerr constant, K, is determined in the blue phases of a non-polymer stabilized material, ~ 3x10-9 mV-2 (BPI). The large value of K is attributed to significant pre-transitional values of the dielectric anisotropy and birefringence. K follows an inverse dependence on temperature which is more marked in BPII than BPI, and we consequently suggest that the BPI demonstrates properties best suited to electro-optic devices. The field effects in blue phase include electrostriction and the influence of the Kerr effect was separated from electrostriction phenomena for the first time in this work. Finally in the Kerr effect measurements, the Kerr constant in the optically isotropic dark conglomerate phase of a bent-core material was studied for the first time, with rather low values, ~1x10-11 mV-2. The low Kerr constant can be understood in the context of the physical properties of the material. Supercooling phenomena in the blue phase were studied through an analysis of the optical properties in thin cells. Features including the Bragg reflection peak jump and hysteresis are measured through the reflection spectra. A blue phase sample with a single orientation over an area of millimeters was prepared to help the spectra study of the blue phases. Although some previous reports indicated that there may be a new blue phase in the supercooled region, we find that there is no evidence shows that the supercooled blue phase has a different structure from the BPI.Chiral molecules have been included as dopants in achiral bent-core materials to produce a range of new chiral mixtures. Different host materials and chiral dopants have been used to produce several chiral nematic materials in which the chiral nematic phase, the underlying smectic phase and the blue phases are examined. The order parameter is determined as a function of temperature in the chiral nematic phase, and compared to that determined for several calamitic materials; no discernible difference is found. A study of the pitch divergence in the chiral nematic phase of the bent-core mixtures shows interesting properties at both low temperature (as the smectic phase is approached) and at high temperatures (at the transition to the blue phase). An unusual phase separation of the chiral dopant in the mixtures is reported, and details are deduced through a comparison between different mixtures. It is found that a dopant with similar clearing point to the bent-core material has less likelihood of phase separation. Although the blue phase temperature range is extended in these mixtures in comparison with typical values for calamitic materials, it does not extend beyond 2K in any of the materials. Both blue phase I and the fog phases are observed in these chiral bent core systems, but no BPII is observed in any of the materials studied. The small k33 (~ 2.8 pN at 10 K below clearing point) in the bent-core host material is suggested as one of the reasons that the blue phase range is not enhanced as much as may have been expected from reports by other authors.
9

Multi-functional nanocomposites for the mechanical actuation and magnetoelectric conversion / Nanocomposites multifonctionnels pour l'actionnement mécanique et la conversion magneto-électrique

Zhang, Jiawei 13 December 2011 (has links)
L’effet magnétoélectrique (ME) se traduit par la possibilité d’induire une magnétisation à l’aide d’un champ électrique (effet direct) ou celle d’induire une polarisation électrique à l’aide d’un champ magnétique (effet inverse). Les composites laminés qui possèdent de grands coefficients ME ont généré beaucoup d’intérêt dans le domaine des capteurs, des modulateurs, des interrupteurs et des inverseurs de phase. Dans cette thèse, nous présentons les performances de composites dits laminés à deux ou trois couches. Il a été montré que l’on pouvait obtenir des performances en conversion magnéto-électrique directe en associant des phases magnétostrictives et piézoélectriques. Une modélisation de leur comportement basée sur un oscillateur mécanique a été proposée. Elle a été en particulier utilisée pour simuler le couplage mécanique entre deux couches. Une autre approche pour développer des dispositifs originaux a consisté à utiliser un champ magnétique alternatif pour induire des courants de Foucault dans des électrodes métalliques et une Force de Lorentz en présence d’un deuxième champ magnétique continu. Si ces électrodes recouvrent un matériau piézoélectrique, la force de Lorentz sera alors convertie en signal électrique suivant l’effet direct. Cette approche permet donc de développer des dispositifs de conversion électromagnétique sans phase magnétique. Différents prototypes utilisant un bimorphe piézoélectrique, un film de PVDF et une céramique piézoélectrique ont été réalisés et caractérisés. Un signal électrique proportionnel à la composante continue du champ magnétique a été mis en évidence, ce qui ouvre des applications pour la détection magnétique. Cette thèse s’est également intéressée à l’augmentation du coefficient d’électrostriction par injection de charges électriques en utilisant la technique de décharge Corona. Cette étude a été réalisée sur du polypropylène, connu pour sa capacité à stocker des charges électriques. Le mécanisme de stockage de charge et l’effet sur l’électrostriction ont été étudiées par la mesure du potentiel de surface, la mesure des courants thermo-stimulés, la calorimétrie différentielle et l’interférométrie Laser. L’injection de charges a contribué à une augmentation de la permittivité et par la même à celle du coefficient d’électrostriction, en accord avec un modèle simple de distribution de charges dans l’échantillon. / Magnetoelectric (ME) interactions in matter correspond to the appearance of magnetization by means of an electric field (direct effect) or the appearance of electric polarization by means of a magnetic field (converse effect). The composite laminates which possess large ME coefficient, have attracted much attention in the field of sensors, modulators, switches and phase inverters. In this thesis, we report on the ME performances of the bi- and tri- layered composites. It is shown that their ME couplings can be achieved by combining magnetostrictive and piezoelectric layers. A model based on a driven damped oscillation is established for the piezoelectric/magnetostrictive laminated composite. It is used to simulate the mechanical coupling between the two layers. In addition, we report that the ME coupling can be achieved without magnetic phase but only with eddy current induced Lorentz forces in the metal electrodes of a piezoelectric material induced by ac magnetic field. The models based on the Lorentz effect inducing ME coupling in PZT unimorph bender, polyvinylidene fluoride (PVDF) film and PZT ceramic disc are thus established. The results show the good sensitivity and linear ME response versus dc magnetic field change. Thus, the room temperature magnetic field detection is achievable using the product property between magnetic forces and piezoelectricity. Besides, we report on the electrostrictive performance of cellular polypropylene electret after high-voltage corona poling. We use the Surface Potential test, Thermal Stimulated Depolarization Current experiment and Differential Scanning Calorimetry experiment to analyse its charge storage mechanism. The result show that the electrostrictive coefficient and relative permittivity of the charged samples increase. Last but not least, in order to explain this phenomenon, a mathematic model based on the charged sample has been established.
10

Polyuréthanes électrostrictifs et nanocomposites : caractérisation et analyse des mécanismes de couplages électromécaniques / Electrostrictive polyurethanes and nanocomposites : characterization and analyse of the mechanisms of electromechanical couplings

Wongtimnoi, Komkrisd 19 December 2011 (has links)
Depuis quelques années on s'intéresse aux actionneurs base polymères, souvent appelés polymères électroactifs électroniques (EAPS) pour intégrer dans des microsystèmes électromécaniques (MEMS). Trois mécanismes sont à l'origine du couplage électromécanique : (i) la piézoélectricité qui apparait dans certaines phases cristallines, (ii) la force "de Maxwell" lorsqu'un champ électrique aux bornes du condensateur constitué d'un polymère souples placé entre deux électrodes, et (iii) l'électrostriction, phénomène intrinsèque aux matériaux polaires, mal connu. Les deux derniers se traduisent par une dépendance quadratique de la déformation macroscopique avec le champ électrique appliqué. Parmi les EAPs électrostrictifs, on cite souvent certains polyuréthanes (PU) qui a conduit à ce choix pour ce travail de thèse. Une première partie a consisté à analyser en détail l'électrostriction de 3 PUs, copolymères à blocs de deux types d'unités de répétition, les unes conduisant à des segments rigides très polaires, les autres à des segments souples peu polaires. La séparation de phase qui apparait lors de la mise en œuvre de ces PUs (contenant des fractions différentes de segments souples et rigides) semble propice à l'apparition de leur électrostriction. C'est ce qu'indique une modélisation récemment proposée qui prédit un facteur de près de 1000 entre forces de Maxwell (ici négligeables) et électrostriction. Le comportement des matériaux résultent clairement de la compétition entre contraintes d'origine électrostatique (dipôles des phases polaires dans un gradient de champ électrique) et contraintes mécaniques liées à la rigidité des phases. L’influence systématique de l'épaisseur des films sur leur activité électromagnétique a été rendue compte: les films minces présentent une plus faible déformation à champ électrique donné que les films plus épais. Les films obtenus par évaporation du solvant utilisé pour dissoudre les PU présentent probablement un gradient de microstructure : en surface, l'évaporation rapide limite la séparation de phase, alors qu'elle est plus avancée à cœur. C’est cohérent avec la modélisation reposant sur la présence de gradient de constante diélectrique au sein des films. Dans une dernière partie, on a cherché à augmenter encore l'électrostriction de ces matériaux en dispersant des particules conductrices à conduction électronique, de taille nanométrique (noir de carbone et nanotubes de carbone). On observe trois effets, l'un correspondant à l'augmentation de la constante diélectrique apparente (celle diverge au seuil de percolation), et un deuxième effet à une augmentation des forces d'attraction locales. En revanche, le troisième effet qui contrecarre les forces d'origine électrostatique puisqu'il résulte de l'augmentation de la rigidité dû à la présence des particules rigides. Là encore, la compétition entre contraintes électrostatique et mécanique conduit à un optimum en termes de fraction volumique de particules renforçantes. / Piezoelectric ceramics are commonly used for actuation applications. However, they suffer from several drawbacks particularly such low electric field-induced strains and difficult implementation inside microelectromechanical systems (MEMS). Recently, electroactive polymers (EAPs) have attracted considerable interest, especially following the publication of elevated electric field-induced strain values. The results have rendered EAPs very attractive for replacing the lead-based ceramics. Three mechanisms are responsible for the electromechanical coupling in electronic EAPs: (i) The piezoelectricity that appears in some crystalline phases, (ii) The “Maxwell” forces when applying an electric field through a capacitor which consists of a flexible polymer film placed between two electrodes, and (iii) The electrostriction, an intrinsic phenomenon related to polar materials, which is still poorly understood. The last two mechanisms result in a quadratic dependence of the deformation with the applied electric field. Among the electrostrictive EAPs, some polyurethanes (PU) have been often cited, and have therefore guided the choice of the materials for this work. The first part was to analyze the electrostrictive behavior of three PUs, made of two partially miscible types of repeating units: the high polar hard segments and the low polar soft segments. The phase separation occurred during the elaboration process of these PU films seems favorable to the emergence of electrostrictive behavior. A model predicted recently an almost 1000 factor between the electrostriction and the Maxwell stress (here negligible). This is clearly related to the competition between the electrostatic strains (polar phases dipoles in a field gradient) and the mechanical stresses. The thickness of films was found to have a strong influence on electromechanical activity: thin films present a lower strain for a given electric field compared to thick films. Depending on the solvent evaporation during the film elaboration, the films exhibit a thickness gradient in the microstructure: Fast evaporation on the surface inhibits the phase separation, whereas it is more favored in the core. This is consistent with the modeling based on the gradient of dielectric constant in PU. In the last part, we aimed to further increase the electrostriction of PU by filling with nanoscale conductive particles (carbon black or carbon nanotubes). This normally results three effects, one corresponding to the increase of the dielectric constant in the vicinity of the percolation threshold, a second effect relates to an increase in local attractive forces which behave as internal constraints. In contrast, the third effect counteracts the electrostatic forces since it results from the increased stiffness due to the hard particles. Again, the competition between electrostatic and mechanical stress leads to an optimum induced-deformation associated to a fraction of reinforcing particles.

Page generated in 0.599 seconds