• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Microfabrication and Characterization of Freestanding and Integrated Carbon Nanotube Thin Films

Syme, Derric Benjamin 01 April 2019 (has links)
This work chronicles the fabrication of two unique thin films using carbon nanotubes. The first is a carbon film made primarily from vertically grown carbon nanotubes (CNTs) and rolled into lateral alignment. The second is an insulating film created by CNTs as a scaffolding to create a porous silica layer. Each topic represents a different method of utilizing CNTs for thin-film fabrication.Investigation of an entirely carbon thin film, comprised of aligned and laterally oriented carbon nanotubes was performed. The thin film was strengthened by deposition of amorphous carbon for a total thickness of <<> 5 µm. This thickness is thinner than many previous films fabricated entirely out of carbon. Vertically aligned CNT arrays were manually rolled into a thin sheet and released from the growth substrate. Infiltration with amorphous carbon (as carbon coating) on the rolled CNTs was used to improve adhesion between neighboring CNTs after lateral alignment and to improve the mechanical integrity of the film. Mechanical property characterization indicated the ability to sustain a pressure differential across the film of up to 82.7 kPa for a suspended film of 4 mm in diameter. Peak stress, Youngs modulus and biaxial modulus were obtained as a characterization of the strength of the thin film.Fabrication and examination of a porous silica thin film, potentially for use as an insulating thermal barrier, was investigated. A vertically aligned CNT forest, created by chemical vapor deposition (CVD), was used as a scaffolding for the porous film. Silicon was deposited on the CNT forest using low pressure CVD (LPCVD), then oxidized to remove the CNTs and convert the silicon to silica “ a material often used for electrical or thermal passivation. This fabrication method introduces hollow pores where the CNTs once occupied, further increasing the materials insulating properties. Thermal testing was performed by equating radiative and conductive heat transfer in a vacuum chamber and comparing the temperature difference between the film and a reference sample of comparable thermal resistance. For films approximately 50 µm thick, the thermal conductivity was found to be 0.054 - 0.071 W/mK.
282

Theory and Measurements of Thermal Properties in Nanowires and Carbon Nanotubes

Bifano, Michael F. P. 24 August 2012 (has links)
No description available.
283

Carbon Nanotubes on Carbon Fibers: Synthesis, Structures and Properties

Zhang, Qiuhong 05 May 2010 (has links)
No description available.
284

Supercapacitors Based on Carbon Nanotube Fuzzy Fabric Structural Composites

Alresheedi, Bakheet January 2012 (has links)
No description available.
285

A Simple Coarse-Grained Model of a Carbon Nanotube Forest Interacting with a Rigid Substrate

Marmaduke, Andrew Robert 28 May 2015 (has links)
No description available.
286

Processing, Characterization and Applications of Aligned Carbon Nanotube Sheets

Malik, Rachit 30 May 2017 (has links)
No description available.
287

Multiscale Model of Heat Dissipation Mechanisms During Field Emission from Carbon Nanotube Fibers

Zhu, Weiming 30 October 2018 (has links)
No description available.
288

Carbon Nanotube Smart Materials

Kang, Inpil 23 May 2005 (has links)
No description available.
289

Synthesis of Super-Long Carbon Nanotube Arrays by Chemical Vapor Deposition

Gorton, Andrew J. 28 August 2008 (has links)
No description available.
290

Molecular/Nano Level Approaches for the Enhancement of Axial Compressive Properties of Rigid-Rod Polymers

Dang, Thuy Dinh 03 November 2009 (has links)
No description available.

Page generated in 0.2296 seconds