• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Processamento e funcionalização de pontas para aplicações biológicas de microscopia de força atômica / Processing and functionalization of tips for biologial applications of atomic force microscopy

Moreau, Alberto Luís Dario 17 November 2005 (has links)
Orientador: Monica Alonso Cotta / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-06T19:04:57Z (GMT). No. of bitstreams: 1 Moreau_AlbertoLuisDario_M.pdf: 5884680 bytes, checksum: 286ffec6c18e2e2bd91cb558260527eb (MD5) Previous issue date: 2005 / Resumo: Este trabalho teve como objetivo implementar a técnica de espectroscopia de força no Microscópio de Força Atômica (AFM) existente no LPD/IFGW/UNICAMP e aplicá-la ao estudo de pontas e amostras funcionalizadas com tiol (mercaptoundecanoic acid). Em particular, foi necessária uma caracterização minuciosa da ponta de AFM, utilizando imagens de microscopia eletrônica. Avaliamos a metalização da ponta com Au (necessária para a funcionalização), o raio da extremidade da ponta e as formas de aproximação da mesma em relação à amostra. Um estudo da constante de mola da alavanca onde se localiza a ponta foi realizado para obtermos valores das forças absolutas medidas. As medidas de força foram realizadas em atmosfera de N2 para evitarmos forças capilares embora também tenhamos realizado algumas medidas em meio ambiente. Variamos a técnica utilizada para a metalização da ponta (sputtering e deposição térmica), a concentração da solução tiol/etanol e os tempos de funcionalização das pontas e amostras. As medidas de força de adesão do tiol nos mostraram que a rugosidade da amostra interfere significativamente na área de contato entre ponta e amostra e conseqüentemente na dispersão nas forças. Apesar disso, nossos resultados forneceram valores de força de adesão e energia livre com a mesma ordem de grandeza que a literatura na área. Em paralelo, foram realizados testes de resistência e durabilidade com pontas de nanotubos de carbono, em colaboração com o Dr. Daniel Ugarte, além de imagens de AFM de amostras de DNA plasmídico, um possível candidato para futuros trabalhos com pontas funcionalizadas / Abstract: In this work we have implemented the force spectroscopy technique using the Atomic Force Microscopy (AFM) equipment at the LPD/IFGW/UNICAMP; this technique was applied to the study of functionalized tips and samples with thiol (mercaptoundecanoic acid). In particular, a detailed characterization of AFM tips with Electron Microscopy was carried out. We have studied the tip metalization with Au (necessary for functionalization), the tip radius and the several modes of tip-sample approximation. We have also studied models for the cantilever spring constant in order to evaluate the absolute force values. The force measurements were carried out in N2 atmosphere to prevent capillary forces, though we also carried out some measurements in laboratory atmosphere. Tip metalization techniques (sputtering and thermal deposition), the thiol/ethanol solution concentration and the functionalization times of tip and samples were varied in this work. The sample roughness can interfere in the contact area between tip and sample, and, thus on the thiol adhesion force measurements ¿ particularly on force values dispersion. In spite of that, our measurements provided values for the thiol adhesion forces and free energies in the same order of magnitude of the literature in the area. Parallel to this work, we have carried out resistance and durability tests with carbon nanotubes tips, in collaboration with Prof. Daniel Ugarte, as well as AFM images of plasmid DNA samples, a likely candidate for future work using funcionalized tips / Mestrado / Física / Mestre em Física
242

TorÃÃo natural em nanotubos de carbono de parede simples. / Natural Torsion on Sigle Wall Carbon Nanotubes

Daniel Gomes VerÃosa 12 February 2012 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / A mais recente revoluÃÃo tecnolÃgica vem surgindo atravÃs de avanÃos na Ãrea da nanotecnologia, onde se destacam materiais nanomÃtricos como os nanotubos de carbono de parede simples (SWNTs). Esse novo material, descoberto em 1993, tÃm gerado grande interesse acadÃmico e industrial devido Ãs suas propriedades fÃsicas Ãnicas. Trabalhos recentes indicam que essas propriedades sÃo extremamente sensÃveis a diversos tipos de deformaÃÃo estruturais, como aquelas de natureza axial, radial e torcional. Neste trabalho estudamos teoricamente como a estrutura eletrÃnica dos SWNTs, e consequentemente suas propriedades, reagem à presenÃa de torÃÃo. Utilizamos o modelo Tight-Biding estendido (ETB) para calcular a estrutura de bandas dos tubos. A simulaÃÃo de torÃÃo à feita a partir de vÃnculos especÃficos que altera a componente angular dos vetores primitivos da rede do grafeno. Para obtermos a configuraÃÃo mais estÃvel dos SWNTs, utilizamos um mÃtodo denominado gradiente simples modificado de modo a minimizarmos sua energia total. Foi observado que nanotubos quirais apresentam um valor de torÃÃo diferente de zero, denominada torÃÃo natural, no seu estado fundamental. Essa torÃÃo decresce, de forma universal, com o inverso do cubo do diÃmetro. Por sua vez, a dependÃncia da torÃÃo natural com o Ãngulo quiral varia de acordo com a metalicidade do SWNT. As energias de transiÃÃo Ãtica para o tubo naturalmente torcionado e nÃo torcionado sÃo comparadas, sendo observado variaÃÃes de atà 50% no minigap de tubos metÃlicos. Por fim, discutimos quais as possÃveis implicaÃÃes da presenÃa da torÃÃo natural na ciÃncia por trÃs dessa nanoestrutura de carbono.
243

Nano-reinforced epoxy resin for carbon fibre fabric composites

Liu, Yan January 2016 (has links)
This thesis reports a study of the effects on processing and properties of incorporating nano-scale reinforcements (multiwall carbon nanotubes, MWCNTs) in the matrix of epoxy- carbon fibre (CF) laminate composites to produce multi-scale composites (M-SC). The main aim of this research was to study the effects of MWCNTs on matrix toughening and the through-thickness properties of M-SCs based on a commonly used aerospace grade epoxy resin — triglycidyl-p-aminophenol (TGPAP) cured with diaminodiphenyl sulphone (DDS). In order to improve resin processing, diglycidyl ether of bisphenol F (DGEBF) was added into the TGPAP/DDS system as a reactive diluent. Factorial experimental design (FED) was used to optimize the composition of this tri-component system to obtain high Tg and low resin viscosity, which gave a TGPAP/DGEBF/DDS system with 30.56 wt.% of DGEBF and a chemical stoichiometry of 0.5. Three types of MWCNTs were used; as-received (AR-), base-washed (BW-) and amine functionalized (NH2-). These were shear-mixed with both the bi- and tri-component systems using a 3-roll mill to produce nanocomposite matrices (NCM). The curing behaviour, dispersion state of MWCNTs in the resin and processability of NCMs were studied to decide upon the preparation method for the final M-SC. The fracture toughness (KIC) and the flexural properties of NCM were affected by both MWCNTs and the matrix type; thus KIC increased by up to 8 % in TGPAP/DDS NCM but decreased by 23% in TGPAP/DGEBF/DDS NCM with 0.5 wt.% AR-CNTs. The addition of both non-functionalized and functionalized MWCNTs increased the flexural modulus. The failure mechanism of NCMs was found to be dominated by the size and distribution of CNT aggregates and the behaviour of MWCNTs, both those dispersed in the matrix and in aggregates. The addition of functionalized MWCNTs increased the interfacial bonding between MWCNT and epoxy resin and thus improved the mechanical properties. All the NCM systems were taken forward to manufacture M-SC using a hybrid resin film infusion (RFI)/hot press process. The fibre volume fraction and the void content could be controlled at 43 ± 5 % for M-SC with TGPAP/DDS NCM and 60 ± 6 % for M-SC with TGPAP/DGEBF/DDS NCM. M-SCs were characterised using a range of tests, including flexural, interlaminar shear strength (ILSS), mode-II interlaminar fracture toughness (GIIC), low velocity impact and compression after impact (CAI). The most obvious improvement occurred for the M-SC with tri-component system with 0.5 wt.% CNTs, whereILSS increased by 16 % upon adding NH2-CNTs and GIIC increased significantly on addition of 0.5 wt.% AR-CNTs and NH2-CNTs, by 85% and 184% respectively. However the effect of MWCNTs on other properties was at best marginal. For example, for the M-SC with TGPAP/DDS, the flexural modulus and ILSS only increased by 4.1 % and 2.3 % with 0.5 wt.% AR-CNT.
244

Inkjet printing of carbon nanotubes for electronic applications

Mustonen, T. (Tero) 24 November 2009 (has links)
Abstract In this thesis, preparation of carbon nanotube (CNT) inks and inkjet printing of aqueous dispersions of CNTs for certain electrical applications are studied. The nanotube inks prepared in this work are based on chemically oxidized CNTs whose polar side groups enable dispersion in polar solvents. Subsequent centrifugation and decanting processes are used to obtain stable dispersions suitable for inkjet printing. The inks are based on either carboxyl functionalized multi-walled carbon nanotubes (MWCNTs), carboxyl functionalized single wall carbon nanotubes (SWCNTs) or SWCNT-polymer composites. The applicability of MWCNT inks is firstly demonstrated as printed patterns of tangled nanotube networks with print resolution up to ∼260 dpi and surface resistivity of ∼40 kΩ/□. which could be obtained using an ordinary inkjet office printer. In addition, MWCNT inks are found to exhibit spatial ordering in external magnetic fields due to entrapped iron catalyst nanoparticles in the inner-tubular cavity of the nanotubes. Ordering of nanotubes in the inks and in drying droplets placed in relatively weak magnetic fields (B ≤ 1 T) is demonstrated and studied. The high electrical conductivity and optical transparency properties of SWCNTs are utilized for enhancing the conductivity of transparent poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS) films. Polymer-nanotube composite materials are inkjet printed on flexible substrates. It is demonstrated that incorporation of SWCNTs in the thin polymer films significantly increases the electrical conductivity of the film without losing the high transparency (> 90%). The structure of composite films is studied using atomic force microscopy (AFM). The electronic properties of deposited random SWCNT networks are studied. The amount of deposited SWCNT is controlled by the inkjet printing technique. In dense networks the current-voltage behaviour is linear whereas for sparse films the behaviour is nonlinear. It is shown that the conduction path in dense films is through the metallic nanotubes, but in sparse films the percolation occurs through random networks of metallic and semiconducting SWCNTs having Schottky-type contacts. The existence of Schottky-junctions in the films is demonstrated with field-effect transistors (FET) on Si-chips and on polymer substrates. The latter is demonstrated as fully printed transistors using a single ink as a material source. FETs are further utilized as chemical-FET sensor applications. The performance of resistive CNT sensors and their comparisons with chem-FETs in terms of selectivity are studied for H2S gas.
245

Hydroxyapatite-Nanotube Composites and Coatings for Orthopedic Applications

Lahiri, Debrupa 31 May 2011 (has links)
Hydroxyapatite (HA) has received wide attention in orthopedics, due to its biocompatibility and osseointegration ability. Despite these advantages, the brittle nature and low fracture toughness of HA often results in rapid wear and premature fracture of implant. Hence, there is a need to improve the fracture toughness and wear resistance of HA without compromising its biocompatibility. The aim of the current research is to explore the potential of nanotubes as reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT) composites and coatings are synthesized by spark plasma sintering and plasma spraying respectively, and investigated for their mechanical, tribological and biological behavior. CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%) of HA for coating and free standing composites. CNTs have demonstrated a positive influence on the proliferation, differentiation and matrix mineralization activities of osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated titanium implant in animal model (rat) shows excellent histocompatibility and neobone integration on the implant surface. The improved osseointegration due to presence of CNTs in HA is quantified by the adhesion strength measurement of single osteoblast using nano-scratch technique. Considering the ongoing debate about cytotoxicity of CNTs in the literature, the present study also suggests boron nitride nanotube (BNNT) as an alternative reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added to HA. The resulting composite having 4 wt.% BNNTs improved the fracture toughness (~85%) and wear resistance (~75%) of HA in the similar range as HA-CNT composites. BNNTs were found to be non-cytotoxic for osteoblasts and macrophages. In-vitro evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite formability of BNNT surface in ~4 days establishes its osseointegration ability.
246

Molecular Simulations And Modelling Of Mass Transport In Carbon Nanotubes

Choudhary, Vinit January 2005 (has links) (PDF)
No description available.
247

Chemical Vapour Deposition Growth of Carbon Nanotube Forests: Kinetics, Morphology, Composition, and Their Mechanisms

Vinten, Phillip A. January 2013 (has links)
This thesis analyzes the chemical vapour deposition (CVD) growth of vertically aligned carbon nanotube (CNT) forests in order to understand how CNT forests grow, why they stop growing, and how to control the properties of the synthesized CNTs. In situ kinetics data of the growth of CNT forests are gathered by in situ optical microscopy. The overall morphology of the forests and the characteristics of the individual CNTs in the forests are investigated using scanning electron microscopy and Raman spectroscopy. The in situ data show that forest growth and termination are activated processes (with activation energies on the order of 1 eV), suggesting a possible chemical origin. The activation energy changes at a critical temperature for ethanol CVD (approximately 870°C). These activation energies and critical temperature are also seen in the temperature dependence of several important characteristics of the CNTs, including the defect density as determined by Raman spectroscopy. This observation is seen across several CVD processes and suggests a mechanism of defect healing. The CNT diameter also depends on the growth temperature. In this thesis, a thermodynamic model is proposed. This model predicts a temperature and pressure dependence of the CNT diameter from the thermodynamics of the synthesis reaction and the effect of strain on the enthalpy of formation of CNTs. The forest morphology suggests significant interaction between the constituent CNTs. These interactions may play a role in termination. The morphology, in particular a microscale rippling feature that is capable of diffracting light, suggest a non-uniform growth rate across the forest. A gas phase diffusion model predicts a non-uniform distribution of the source gas. This gas phase diffusion is suggested as a possible explanation for the non-uniform growth rate. The gas phase diffusion is important because growth by acetylene CVD is found to be very efficient (approximately 30% of the acetylene is converted to CNTs). It is seen that multiple mechanisms are active during CNT growth. The results of this thesis provide insight into both the basic understanding of the microscopic processes involved in CVD growth and how to control the properties of the synthesized CNTs.
248

Characterisation and Properties Improvement of Armour Ceramics

Fakolujo, Olaniyi Samuel January 2016 (has links)
As firearms continuously become more sophisticated, there have been commensurate efforts to optimize the ballistic performance of armours, with ceramic materials currently at the forefront of such studies. These efforts have focused on improving processing and microstructural design with reinforcements using dispersion particles, carbon nanotubes (CNT) and boron nitride nanotubes (BNNT). In most studies, ballistic testing has been used to identify parameters affecting the performance. The research documented here focuses on: (1) the investigation of two commercial ceramics, namely silicon carbide (SiC) and zirconia toughened alumina (ZTA). The primary material properties evaluated for the characterization included: hardness, fracture toughness, flexural strength and Young’s modulus. Other properties investigated included the microstructure, porosity/density, and mode of failure or fracture. (2) Ballistic depth of penetration (DOP) testing for six candidate ceramic armour systems including three monolithic ceramics (Al2O3, SiC and B4C) and three nanotube toughened ceramic composites (Al2O3-BNNT, Al2O3-single walled CNT and SiC-BNNT). SiC showed a hardness of 2413 HV, which is far beyond the requirements for armour ceramic. In contrast, ZTA barely met the hardness requirement of 1500 HV, but showed improved toughness of 4.90 MPa m1/2 beyond values reported for monolithic alumina. SiC and ZTA showed that microstructural design improves fracture toughness but processing introduces defects that can substantially reduce other armour related properties such as the strength. The results of the Charpy and drop tower impact tests are in agreement with indentation fracture toughness results suggesting a great degree of reliability of this cost efficient method. The addition of nanotubes produced an increase in toughness and a decrease in hardness in the ceramics, which resulted in an overall drop in performance during ballistic depth of penetration (DOP) tests. A microstructure-quasi-static mechanical properties-ballistic performance relationship was established which led to the development of a novel ballistic performance index and a new DOP model. The proposed ballistic performance index yielded a ranking, which agrees better with experimental observations than the currently published indices. The developed semi-empirical model suggests that the ballistic performance of ceramics is improved with increased fracture toughness, reduced flaw size and higher density.
249

Robust and High Current Cold Electron Source Based on Carbon Nanotube Field Emitters and Electron Multiplier Microchannel Plate

Seelaboyina, Raghunandan 19 November 2007 (has links)
The aim of this research was to demonstrate a high current and stable field emission (FE) source based on carbon nanotubes (CNTs) and electron multiplier microchannel plate (MCP) and design efficient field emitters. In recent years various CNT based FE devices have been demonstrated including field emission displays, x-ray source and many more. However to use CNTs as source in high powered microwave (HPM) devices higher and stable current in the range of few milli-amperes to amperes is required. To achieve such high current we developed a novel technique of introducing a MCP between CNT cathode and anode. MCP is an array of electron multipliers; it operates by avalanche multiplication of secondary electrons, which are generated when electrons strike channel walls of MCP. FE current from CNTs is enhanced due to avalanche multiplication of secondary electrons and in addition MCP also protects CNTs from irreversible damage during vacuum arcing. Conventional MCP is not suitable for this purpose due to the lower secondary emission properties of their materials. To achieve higher and stable currents we have designed and fabricated a unique ceramic MCP consisting of high SEY materials. The MCP was fabricated utilizing optimum design parameters, which include channel dimensions and material properties obtained from charged particle optics (CPO) simulation. Child Langmuir law, which gives the optimum current density from an electron source, was taken into account during the system design and experiments. Each MCP channel consisted of MgO coated CNTs which was chosen from various material systems due to its very high SEY. With MCP inserted between CNT cathode and anode stable and higher emission current was achieved. It was ~25 times higher than without MCP. A brighter emission image was also evidenced due to enhanced emission current. The obtained results are a significant technological advance and this research holds promise for electron source in new generation lightweight, efficient and compact microwave devices for telecommunications in satellites or space applications. As part of this work novel emitters consisting of multistage geometry with improved FE properties were was also developed.
250

Comprehensive Process Maps for Synthesizing High Density Aluminum Oxide-Carbon Nanotube Coatings by Plasma Spraying for Improved Mechanical and Wear Properties

Keshri, Anup K 12 July 2010 (has links)
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ~27% and ~24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

Page generated in 0.0323 seconds