• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 81
  • 26
  • Tagged with
  • 125
  • 125
  • 79
  • 56
  • 39
  • 28
  • 26
  • 24
  • 23
  • 22
  • 21
  • 21
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Functional characterization of CCCTC-binding factor (CTCF) in the pathogenesis of hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Zhang, Bin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 154-187). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
52

Characterization of viral hepatitis B integration sites in hepatocellular carcinoma.

January 2007 (has links)
Ng Wah. / Thesis submitted in: August 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 101-113). / Abstracts in English and Chinese. / ABSTRACT --- p.II / 摘要 --- p.IV / ACKNOWLEDGEMENT --- p.VI / TABLE OF CONTENTS --- p.VII / LIST OF TABLES --- p.X / LIST OF FIGURES --- p.XI / ABBREVIATIONS --- p.XII / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Etiological Factors of Hepatocellualr Carcinoma (HCC) --- p.4 / Chapter 1.2.1 --- Dietary Aflatoxins --- p.4 / Chapter 1.2.2 --- Liver Cirrhosis --- p.5 / Chapter 1.2.3 --- Alcohol Abuse --- p.6 / Chapter 1.2.4 --- Viral Hepatitis Infection --- p.6 / Chapter 1.3 --- Literature Review on the Investigations of HBV Integrants in HCC --- p.16 / Chapter 1.3.1 --- Affected Host Junctions --- p.17 / Chapter 1.3.2 --- Viral Junctions --- p.18 / Chapter 1.4 --- Restriction Site Polymerase Chain Reaction (RS-PCR) --- p.19 / Chapter 1.5 --- Aims of Thesis --- p.21 / Chapter Chapter 2 --- Materials and Methods --- p.22 / Chapter 2.1 --- Materials --- p.23 / Chapter 2.1.1 --- Chemicals --- p.23 / Chapter 2.1.2 --- Buffers --- p.24 / Chapter 2.1.3 --- Cell Cultures --- p.24 / Chapter 2.1.4 --- Nucleic Acids --- p.24 / Chapter 2.1.5 --- Enzymes --- p.25 / Chapter 2.1.6 --- Equipment --- p.25 / Chapter 2.1.7 --- Software and Web Resources --- p.26 / Chapter 2.2 --- Methods --- p.27 / Chapter 2.2.1 --- DNA Extraction --- p.27 / Chapter 2.2.2 --- RS-PCR --- p.31 / Chapter 2.2.3 --- Sequencing --- p.37 / Chapter 2.2.4 --- Spectral Karyotyping (SKY) --- p.38 / Chapter 2.2.5 --- Fluorescence In situ hybridization --- p.39 / Chapter Chapter 3 --- Investigation of HBV Integration Sites in HCC Cell lines --- p.45 / Chapter 3.1 --- Introduction --- p.46 / Chapter 3.2 --- Materials and Methods --- p.47 / Chapter 3.2.1 --- Cell Lines --- p.47 / Chapter 3.2.2 --- RS-PCR --- p.47 / Chapter 3.2.3 --- Spectral Karyotyping --- p.48 / Chapter 3.2.4 --- Tyramide Signal Amplification for HBV in FISH Analysis --- p.48 / Chapter 3.3 --- Results --- p.51 / Chapter 3.3.1 --- Identification of HBV Integration Sites in Cell Lines --- p.51 / Chapter 3.3.2 --- Evaluation of RSO Primer Efficiency --- p.52 / Chapter 3.3.3 --- SKY and FISH Analysis --- p.53 / Chapter 3.4 --- Discussion --- p.64 / Chapter 3.4.1 --- HBV Insertions in HCC Cell Lines --- p.64 / Chapter 3.4.2 --- Efficacy of RSO Primers --- p.65 / Chapter 3.4.3 --- Investigation of HBV Integration on Chromosomal Rearrangement --- p.65 / Chapter Chapter 4 --- Investigation of Hepatitis B Virus Integration Sites in Primary HCC --- p.67 / Chapter 4.1 --- Introduction --- p.68 / Chapter 4.2 --- Materials and Methods --- p.69 / Chapter 4.2.1 --- Patients --- p.69 / Chapter 4.2.2 --- RS-PCR --- p.70 / Chapter 4.3 --- Results --- p.72 / Chapter 4.3.1 --- HBV Integration Sites in Primary HCC Tumors and Adjacent Non- malignant Liver --- p.72 / Chapter 4.4 --- Discussion --- p.88 / Chapter 4.4.1 --- HBV integration Sites in Primary HCC Tumors and Adjacent Non- malignant Liver --- p.88 / Chapter 4.4.2 --- Summary on HBV Integrants Identified --- p.91 / Chapter Chapter 5 --- Proposed Future Studies --- p.98 / Chapter 5.1 --- Correlation of Structural Aberrations with HBV Integrations --- p.99 / Chapter 5.2 --- Transcriptional Expression Study on the Genes Interrupted by or Located near the Virus Host Junctions --- p.100 / Chapter Chapter 6 --- References --- p.101
53

Functional characterization of FHL2 by microarray analysis and promoter study. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Xu, Jiaying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 98-107). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
54

Delineation of genomic imbalances on chromosome 1 and 4q in hepatocellular carcinoma.

January 2003 (has links)
Leung Ho-yin. / Thesis submitted in: July 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 104-118). / Abstracts in English and Chinese. / Acknowlegements --- p.i / Abstract (English) --- p.ii / Abstract (Chinese) --- p.iv / "Table of Contents," --- p.vi / List of Figures --- p.xi / List of Tables --- p.xii / Abbreviation --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 . --- Cancer Incidences in Hong Kong --- p.2 / Chapter 1.2. --- Hepatocellular Carcinoma (HCC) --- p.2 / Chapter 1.3. --- "Etiological Risk Factors," --- p.7 / Chapter 1.3.1. --- Liver Cirrhosis / Chapter 1.3.2. --- Chronic Viral Hepatitis / Chapter 1.3.2.1. --- Hepatitis B Virus (HBV) / Chapter 1.3.2.2. --- Hepatitis C Virus (HCV) / Chapter 1.3.3. --- Dietary Aflatoxin B1 exposure / Chapter 1.3.4. --- Heavy Alcohol Consumption / Chapter 1.3.5. --- Hemochromatosis / Chapter 1.4. --- Genetic Aberration in HCC --- p.12 / Chapter 1.4.1. --- Chromosomal Gains / Chapter 1.4.2. --- Chromosome Losses / Chapter 1.5. --- Epigenetic Changes --- p.18 / Chapter 1.6. --- Aims of Thesis --- p.20 / Chapter Chapter 2 --- Materials and Methods --- p.22 / Chapter 2.1. --- Materials --- p.23 / Chapter 2.1.1. --- Culture of Cell Lines / Chapter 2.1.2. --- Preparation of Normal Human Metaphase / Chapter 2.1.3. --- DNA Extraction from Cell Lines / Chapter 2.1.4. --- DNA Extraction from Tissues / Chapter 2.1.5. --- DNA Extraction from Blood / Chapter 2.1.6. --- Nick Translation / Chapter 2.1.7. --- Dot Blot / Chapter 2.1.8. --- Probe Preparation / Chapter 2.1.9. --- Fluorochrome-conjugated antibodies / Chapter 2.1.10. --- Fluorescence Microscopy and Image Analysis / Chapter 2.1.11. --- Primer Labeling / Chapter 2.1.12. --- Polymerase Chain Reaction / Chapter 2.1.13. --- Gel Preparation / Chapter 2.1.14. --- Gel Electrophoresis / Chapter 2.2. --- Sample --- p.28 / Chapter 2.2.1. --- Patients / Chapter 2.2.2. --- Cell Lines / Chapter 2.3. --- Comparative Genomic Hybridization --- p.30 / Chapter 2.3.1. --- Method / Chapter 2.3.1.1. --- Preparation of Normal Human Metaphase / Chapter 2.3.1.2. --- DNA Extraction / Chapter 2.3.1.3. --- Nick Translation / Chapter 2.3.1.4. --- Labeling Efficiency / Chapter 2.3.1.5. --- Probe Preparation / Chapter 2.3.1.6. --- Slide Preparation / Chapter 2.3.1.7. --- Hybridization / Chapter 2.3.1.8. --- Post Hybridization Wash / Chapter 2.3.1.9. --- Image Capturing and Analysis / Chapter 2.3.1.10. --- Control Experiment / Chapter 2.4. --- Microsatellite Analysis --- p.46 / Chapter 2.4.1. --- Method / Chapter 2.4.1.1. --- Fluorescent-Labeled Polymorphic Markers / Chapter 2.4.1.1.1. --- Polymerase Chain Reaction / Chapter 2.4.1.1.2. --- Gel Preparation / Chapter 2.4.1.1.3. --- Gel Electrophoresis / Chapter 2.4.1.1.4. --- Data Analysis / Chapter 2.4.1.2. --- Radioisotope-Labeled Polymorphic Markers / Chapter 2.4.1.2.1. --- Primer Labeling / Chapter 2.4.1.2.2. --- Polymerase Chain Reaction / Chapter 2.4.1.2.3. --- Gel Preparation / Chapter 2.4.1.2.4. --- Gel Electrophoresis / Chapter 2.4.1.2.5. --- Autoradiography and Data Analysis / Chapter 3. --- Chapter 3 Genetic Imbalances on Chromosome 1 --- p.55 / Chapter 3.1. --- Introduction --- p.56 / Chapter 3.2. --- Methods --- p.57 / Chapter 3.2.1. --- Patients and Cell Lines / Chapter 3.2.2. --- CGH / Chapter 3.2.3. --- MSA with Fluorescent-labeled Polymorphic Markers / Chapter 3.2.4. --- Refinement of lp36 loss / Chapter 3.2.5. --- Investigation of Homozygous Deletion in lp36 / Chapter 3.3. --- Results --- p.63 / Chapter 3.3.1. --- CGH / Chapter 3.3.2. --- MSA on Primary HCC Cases / Chapter 3.3.3. --- Refinement of lp36 loss / Chapter 3.3.4. --- Investigation of Homozygous Deletion in lp36 / Chapter 3.3.5. --- CGH vs MSA / Chapter 3.4. --- Discussion --- p.74 / Chapter 4. --- Chapter 4 Genetic Imbalances on Chromosome 4q --- p.78 / Chapter 4.1. --- Introduction --- p.79 / Chapter 4.2. --- Methods --- p.82 / Chapter 4.2.1. --- Patients and Cell Lines / Chapter 4.2.2. --- CGH / Chapter 4.2.3. --- MSA with Radioisotope-labeled Polymorphic Markers / Chapter 4.3. --- Results --- p.86 / Chapter 4.3.1. --- CGH / Chapter 4.3.2. --- MSA / Chapter 4.3.2.1. --- MSA on Primary HCC cases / Chapter 4.3.2.2. --- MSA on In-house developed HCC cell lines / Chapter 4.3.2.3. --- Combined MSA Results / Chapter 4.4. --- Discussion --- p.94 / Chapter 5. --- Chapter 5 Proposed Future Studies --- p.99 / Chapter 5.1. --- "Microarray Analysis," --- p.101 / Chapter 5.2. --- Functional Studies --- p.102 / Chapter 6. --- Bibliography --- p.104
55

Genetic alterations in doxorubicin resistant hepatocellular carcinoma cells: a combined spectral karyotyping, positional expression profiling and candidate genes study.

January 2004 (has links)
Hu Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 95-122). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract (in English) --- p.ii / Abstract (in Chinese) --- p.iv / Table of contents --- p.vi / List of figures --- p.x / List of tables --- p.xi / Abbreviations --- p.vii / Chapter CHAPTER ONE: --- INTRODUCATION --- p.1 / Chapter 1.1 --- Hepatocellular Carcinoma --- p.2 / Chapter 1.1.1. --- Epidemiology of HCC --- p.2 / Chapter 1.1.2. --- The major risk factors --- p.2 / Chapter 1.1.3. --- Management of HCC --- p.3 / Chapter 1.2 --- Mechanisms of multidrug resistance (MDR) in cancer cells --- p.4 / Chapter 1.2.1. --- Major mechanisms in reduced drug accumulation --- p.5 / Chapter 1.2.1.1. --- P-glycoprotein (P-gp) --- p.6 / Chapter 1.2.1.2. --- Multidrug Resistance-associated Protein (MRP) --- p.7 / Chapter 1.2.1.3. --- Other effluxes --- p.8 / Chapter 1.2.2. --- Inhibition of apoptotic signaling pathways --- p.11 / Chapter 1.2.2.1. --- TP53 and multidrug resistance --- p.11 / Chapter 1.2.2.2. --- Anti-oncogene PTEN and drug resistance --- p.13 / Chapter 1.2.2.3. --- Influence of BCL2 family on drug resistance --- p.14 / Chapter 1.3 --- The chemotherapeutic agent of doxorubicin --- p.15 / Chapter 1.4 --- Aims of study --- p.18 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.20 / Chapter 2.1 --- Cell culture --- p.21 / Chapter 2.1.1 --- Cell lines and cell culture --- p.21 / Chapter 2.1.2 --- Subculture --- p.23 / Chapter 2.1.3 --- Cryopreservation --- p.23 / Chapter 2.1.4 --- Recovery of cryopreserved culture --- p.24 / Chapter 2.1.5 --- Cell number counting --- p.24 / Chapter 2.2 --- MTT experiments --- p.26 / Chapter 2.2.1 --- Determination of cell seeding density --- p.26 / Chapter 2.2.2 --- Cytotoxic assay --- p.27 / Chapter 2.3 --- Spectral Karytyping (SKY) --- p.27 / Chapter 2.3.1 --- Pretreatment of chromosome slides for SKY --- p.28 / Chapter 2.3.2 --- Hybridization --- p.28 / Chapter 2.3.3 --- Detection --- p.29 / Chapter 2.4 --- Positional expression profiling --- p.30 / Chapter 2.4.1 --- RNA extraction --- p.32 / Chapter 2.4.2 --- Reverse transcription and cDNA labling --- p.34 / Chapter 2.4.3 --- Probe purification and hybridization --- p.34 / Chapter 2.4.4 --- Image acquisition and data analysis --- p.35 / Chapter 2. 5 --- Quantitative RT-PCR --- p.37 / Chapter 2.5.1 --- RNA extraction --- p.37 / Chapter 2.5.2 --- Primer design --- p.37 / Chapter 2.5.3 --- Reverse transcription --- p.37 / Chapter 2.5.4 --- Quantitative PCR --- p.39 / Chapter 2.6. --- Statistical analysis --- p.40 / Chapter CHAPTER 3 --- RESULTS --- p.43 / Introduction --- p.44 / Chapter 3.1 --- Doxorubicin resistance in HCC cell lines --- p.44 / Chapter 3.2 --- Candidate drug resistance genes --- p.56 / Chapter 3.3 --- The roles of chromosomal instability --- p.58 / Chapter 3.4 --- Candidate resistance genes identified in chromosome 10 --- p.69 / Chapter CHAPTER 4 --- DISCUSSION --- p.75 / Introduction --- p.76 / Chapter 4.1 --- In vitro cell models facilitate drug resistance investigations --- p.11 / Chapter 4.2 --- Aneuploidy and DX resistance --- p.78 / Chapter 4.3 --- The role of known resistance genes on chromosome 10 --- p.79 / Chapter 4.4 --- Identification of novel DX resistance genes on chromosome 10 --- p.80 / Chapter 4.5 --- Common drug resistance genes --- p.83 / Chapter 4.5.1. --- The roles of classical drug resistance --- p.85 / Chapter 4.5.2. --- Inhibition of apoptosis and deregulation of cell cycle --- p.86 / Chapter CHAPTER 5 --- PROPOSED FUTURE STUDIES --- p.90 / Chapter 5.1. --- Validate significant in vitro findings by clinical trials --- p.91 / Chapter 5.2. --- Molecular mechanisms in inactivation of ECHS1 in resistant cells --- p.92 / Chapter 5.3. --- Future utilization of cDNA microarray data --- p.93 / REFERENCES --- p.95 / PUBLICATION --- p.122
56

Effects of Agrimonia pilosa Ledeb. on hepatocarcinogenesis in rats.

January 2003 (has links)
Li Qian. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 102-117). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / List of Abbreviations --- p.ix / List of tables and figures --- p.ix / Content --- p.x / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Traditional Chinese Medicine: Agrimony --- p.1 / Chapter 1.2 --- Hepatocellular carcinoma (HCC) and its risk factors --- p.4 / Chapter 1.3 --- Basic concepts relevant to cancer prevention --- p.6 / Chapter 1.3.1 --- Multistage process of carcinogenesis --- p.6 / Chapter 1.3.2 --- Chemical carcinogenesis --- p.7 / Chapter 1.3.3 --- Possible chemopreventive strategies --- p.8 / Chapter 1.3.4 --- Phase I and phase II systems in chemical carcinogenesis --- p.10 / Chapter Chapter 2 --- Materials and methods --- p.12 / Chapter 2.1 --- Preparation of aqueous extract of Agrimonia pilosa --- p.12 / Chapter 2.2 --- In vivo study --- p.13 / Chapter 2.2.1 --- Animal model for hepatocarcinogenesis --- p.13 / Chapter 2.2.1.1 --- Chemical carcinogens --- p.13 / Chapter 2.2.1.2 --- Animals --- p.16 / Chapter 2.2.1.3 --- Animal treatment and sacrifice --- p.17 / Chapter 2.2.2 --- Histological and immunohistochemical study --- p.20 / Chapter 2.2.3 --- Preparation of liver homogenates and microsomes from rat --- p.23 / Chapter 2.2.4 --- Determination of protein concentration --- p.24 / Chapter 2.2.5 --- COX-2 Activity Assay --- p.25 / Chapter 2.2.6 --- Cytochrome P450 2E1 Assay --- p.26 / Chapter 2.2.7 --- Spectrophotometry Assay for GST --- p.28 / Chapter 2.2.8 --- Isolation of total RNA from liver homogenate --- p.29 / Chapter 2.2.9 --- Semi-quantitative RT-PCR analysis --- p.32 / Chapter 2.3 --- In vitro study --- p.36 / Chapter 2.3.1 --- Cell cultures --- p.36 / Chapter 2.3.2 --- Cytotoxicity assay - Neutral Red Assay --- p.38 / Chapter 2.3.3 --- Cell cycle distribution analysis by flow cytometry --- p.39 / Chapter 2.3.4 --- DNA fragmentation --- p.40 / Chapter Chapter 3 --- Results --- p.43 / Chapter 3.1 --- In vivo study --- p.43 / Chapter 3.1.1 --- Body weight and relative liver weight --- p.43 / Chapter 3.1.2 --- Gross Morphological changes --- p.46 / Chapter 3.1.3 --- Hematoxylin & Eosin (H&E) staining for histological detection --- p.50 / Chapter 3.1.4 --- Effect of AP on DEN-CCl4-induced GST-P positive foci formation and GST-P mRNA expression --- p.60 / Chapter 3.1.5 --- Effects of AP on COX-2 --- p.72 / Chapter 3.1.6 --- Effects of AP on phase I and phase II enzymes --- p.76 / Chapter 3.2 --- In vitro study --- p.80 / Chapter 3.2.1 --- Effects of AP on proliferation of H4IIE cells detected by Neutral Red Assay --- p.80 / Chapter 3.2.2 --- Assessment of cell cycle distribution by flow cytometry --- p.82 / Chapter 3.2.3 --- DNA Fragmentation Assay --- p.88 / Chapter Chapter 4 --- Discussion --- p.90 / Chapter 4.1 --- In vivo study --- p.90 / Chapter 4.1.1 --- Morphological changes during the induction of hepatocarcinogenesis --- p.90 / Chapter 4.1.2 --- Effects of AP on GST-P foci and its mRNA --- p.91 / Chapter 4.1.3 --- Effects of AP on COX-2 enzyme activity and mRNA expression --- p.93 / Chapter 4.1.4 --- Modulation effects of AP on CYP2E1 and GST enzyme activity --- p.95 / Chapter 4.2 --- In vitro study: effects of AP on cancer cell proliferation --- p.97 / Chapter 4.3 --- Summary --- p.99 / References --- p.102
57

The functional characterization of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone in hepatocellular carcinoma: targeting heat shock protein 27 to mediate mitochondrial apoptosis.

January 2012 (has links)
研究背景: / 肝癌是全球常見的惡性腫瘤之一,世界上每年大約有50萬死亡病例,並且呈逐年上升之勢, 是全球第3位的腫瘤死亡原因。慢性乙型和丙型肝炎病毒感染是肝癌的主要成因。肝癌惡性程度高、預後差,並且目前的治療手段非常有限,術後易復發和轉移,迄今尚無正式獲准有效治療藥物。現階段,治療肝癌的主要方法是手術切除,但是隨之引起的併發症以及較高的復發機率嚴重影響了治療的療效,大大降低肝癌病人的存活期。 / 研究目的: / 分析TDP對肝癌細胞和肝腫瘤旁細胞生長的影響;分析TDP抑癌的分子靶標蛋白及其分子機理;驗證TDP對肝癌動物模型的抑制效果。開發一種新型有效的肝癌治療藥物。 / 研究方法: / 首先用MTT法從102種來源於嶺南山竹子的純複合物中分離出了TDP,它是一種甾醇類化合物。採用MTT法檢測TDP對腫瘤細胞生長的影響;流式細胞實驗驗證TDP能否引起腫瘤細胞的凋亡;採用蛋白組學和質譜分析找出TDP抑癌的分子靶標;進一步的蛋白功能增加和缺失實驗證明Hsp27的功能和作用;生物資訊學驗證HSP27和TDP的作用結果;最後利用動物模型驗證TDP對肝腫瘤的治療效果。 / 結果: / TDP不但能效率極高的抑制肝癌細胞的生長而且可以大量誘發肝癌細胞的凋亡,而對正常的肝癌旁細胞沒有影響。二維電泳以及質譜分析TDP處理的肝癌細胞對比DMSO處理的肝癌細胞發現了具有不同表達水準的18種蛋白,Hsp27是其中一個在TDP誘導下調變化倍數較大並且與細胞凋亡有密切關係的蛋白,Hsp27的過表達以及Knock-down都充分驗證了TDP通過調節Hsp27的表達參與了依賴於caspase的線粒體凋亡途徑,在Western Blotting以及RT-PCR中得到了充分的驗證。生物資訊學預測TDP可以與Hsp27結合,實驗結果表明TDP可以誘導Hsp27的聚集並導致功能喪失。動物實驗腫瘤生長結果以及免疫組化結果證明,TDP可以在很大程度上對肝癌有抑製作用。 / 結論: / 本研究首次表明,TDP如果不是完全的,最起碼也是部分通過誘導依賴於caspase的線粒體凋亡的途徑來抑制肝癌細胞的增值和分化, 具有明顯的抗腫瘤的功效,特別是對Hsp27高表達的腫瘤細胞有比較明顯的作用,是一種值得繼續深入研究的有較高潛在價值的藥物。 / Background: / Hepatocellular carcinoma (HCC), the most common primary hepatic malignancy, is a global public health problem that accounts for approximately 500,000 deaths annually. Chronic hepatitis B and hepatitis C infections are the major risk factors for the development of HCC. Due to the high rate of these infections, the incidence of HCC remains alarmingly high globally. Although great advances have been made in HCC treatment, poor prognosis and high risk of recurrence have been major challenges to patients. Currently, surgical resection is the main treatment option for HCC patients; however, complications arising from surgery can threaten its therapeutic effect and patients’ survival. / Objectives: / To characterize the functions of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b]Xanthone (TDP) in cell proliferation of HepG2 cells; to discover the molecular target genes and elucidate the underlying molecular mechanism of TDP; to examine the in vivo function of TDP in a nude mouse tumor model of HCC. Finally, to investigate TDP’s potential as an anti-HCC drug candidate. / Methods and Results: / In this study, we discovered that TDP, isolated from the Chinese medicinal herb, Garcinia oblongifolia, strongly inhibited cell growth and induced caspase-dependent mitochondrial apoptosis in HCC, as evidenced from MTT assay and flow cytometry analysis. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to find the molecular targets of TDP in HCC cells, and eighteen proteins were identified with altered expression, with Hsp27 protein being one of the proteins most significantly down-regulated by TDP. Further Hsp27-siRNA knockdown and Lenti-Hsp27 overexpression studies found that Hsp27 was involved in TDP induced mitochondrial apoptosis, with bioinformatics predictions and biological results revealing that TDP might cause Hsp27 protein form dimer and consequent degradation via the ubiquitin-proteasome system. Finally, subcutaneously injecting cancer cells with Hsp27 expression vector into the dorsal flank of nude mice tumor model also demonstrated the suppressive effect of TDP on HCC. / Conclusions: / In summary, our study discovered that TDP, a natural xanthone, was a potent inhibitor of Hsp27 in HCC. TDP inhibited cell growth and induced apoptosis by inducing Hsp27 degradation, which stimulated mitochondrial cytochrome C release which resultantly activated caspase-3 and caspase-9. These data combined with the results of the animal model strongly supported TDP’s potential as a novel anti-cancer drug candidate, especially for cancers with an abnormally high expression of Hsp27. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Fu, Weiming. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 111-151). / Abstract also in Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iiv / Acknowledgment --- p.vi / Publications --- p.viii / List of Contents --- p.ix / List of Tables --- p.xii / List of Figures --- p.xiii / List of Abbreviations --- p.xv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.1.1 --- Overview of HCC --- p.1 / Chapter 1.1.2 --- Epidemiology of HCC in China and Hong Kong --- p.3 / Chapter 1.2 --- Etiology of HCC --- p.7 / Chapter 1.2.1 --- Cirrhosis --- p.8 / Chapter 1.2.2 --- HBV infection --- p.9 / Chapter 1.2.3 --- HCV infection --- p.10 / Chapter 1.2.4 --- Viral Co-Infection --- p.11 / Chapter 1.2.5 --- Fatty Liver Disease and Cryptogenic Cirrhosis --- p.12 / Chapter 1.2.6 --- Alcohol --- p.13 / Chapter 1.2.7 --- Iron --- p.13 / Chapter 1.2.8 --- Aflatoxin --- p.14 / Chapter 1.2.9 --- Others --- p.14 / Chapter 1.3 --- Diagnosis of HCC --- p.14 / Chapter 1.4 --- Prognosis of HCC --- p.17 / Chapter 1.5 --- Treatment of HCC --- p.19 / Chapter 1.5.1. --- Early stage --- p.19 / Chapter 1.5.2. --- Intermediate and advanced stage --- p.24 / Chapter 1.5.3. --- Terminal stage --- p.28 / Chapter 1.6 --- Signaling pathways in HCC --- p.28 / Chapter 1.6.1 --- Proliferation signaling pathways --- p.29 / Chapter 1.6.2 --- Signaling pathways frequently dysregulated in HCC --- p.30 / Chapter 1.6.3 --- Pathways involved in liver development and cell differentiation --- p.34 / Chapter 1.6.4 --- Inflammation pathways involved in hepatocarcinogenesis --- p.35 / Chapter 1.6.5 --- Pathways involved in neoangiogenesis --- p.37 / Chapter 1.6.6 --- The P53 tumor suppressor --- p.38 / Chapter 1.6.7 --- Heat shock proteins in HCC --- p.39 / Chapter 1.7 --- The roles of microRNAs in liver cancer progression --- p.42 / Chapter 1.8 --- TCM in the treatment of HCC --- p.45 / Chapter 1.8.1 --- Introduction --- p.45 / Chapter 1.8.2 --- Garcinia --- p.49 / Chapter 1.9 --- Objectives of the study --- p.51 / Chapter Chapter 2 --- Materials and Methods --- p.52 / Chapter 2.1 --- Preparation of the pure compounds --- p.52 / Chapter 2.2 --- Liver cell lines and tissue culture --- p.52 / Chapter 2.3 --- Human tissue samples --- p.52 / Chapter 2.4 --- Cell viability assessment with MTT assay --- p.53 / Chapter 2.5 --- Apoptosis analysis --- p.53 / Chapter 2.6 --- Two-dimensional electrophoresis (2-DE), protein visualization and image analysis --- p.54 / Chapter 2.6.1 --- Materials --- p.54 / Chapter 2.6.2 --- Protein extraction --- p.54 / Chapter 2.6.3. --- 2-DE protein profiling --- p.55 / Chapter 2.6.4. --- Gel staining and image analysis --- p.55 / Chapter 2.6.5. --- In-gel protein digestion with trypsin --- p.56 / Chapter 2.6.6. --- MALDI-TOF mass spectrometric analysis --- p.56 / Chapter 2.6.7. --- Database search --- p.57 / Chapter 2.7.1 --- Sample preparation --- p.58 / Chapter 2.7.2 --- SDS-PAGE --- p.58 / Chapter 2.7.3 --- Protein transfer --- p.58 / Chapter 2.7.4 --- Blocking --- p.59 / Chapter 2.7.5 --- Incubation with primary and secondary antibodies --- p.59 / Chapter 2.7.6 --- Proteins Visualization --- p.59 / Chapter 2.8 --- Real-time PCR --- p.60 / Chapter 2.9 --- Vector construction and lentivirus production --- p.61 / Chapter 2.9.1 --- Lenti-vector construction for Hsp27 expression --- p.61 / Chapter 2.9.2 --- Lentivirus production --- p.62 / Chapter 2.9.3 --- Lentivirus infection --- p.63 / Chapter 2.10 --- SiRNAs transfection. --- p.63 / Chapter 2.11 --- Identification of potential protein targets for TDP --- p.64 / Chapter 2.12 --- In Vivo Tumorigenesis --- p.64 / Chapter 2.13 --- Assay of chaperone activity of Hsp27 using lysozyme as substrate --- p.65 / Chapter 2.14 --- Mitochondria and cytosolic proteins preparation --- p.66 / Chapter 2.15 --- Immunohistochemistry (IHC) --- p.67 / Chapter 2.15.1 --- Preparation of paraffin tissue sections --- p.67 / Chapter 2.15.2 --- Immunostaining --- p.67 / Chapter 2.16 --- Methodology of this study --- p.68 / Chapter 2.17 --- Statistical analysis --- p.68 / Chapter CHAPTER 3 --- Results --- p.69 / Chapter 3.1 --- Introduction --- p.69 / Chapter 3.2 --- TDP significantly suppressed cell growth and induced apoptosis in HCC cells. --- p.69 / Chapter 3.2.1 --- TDP was identified from 102 pure compounds by using MTT assay --- p.69 / Chapter 3.2.2 --- TDP significantly suppressed HCC cell growth --- p.73 / Chapter 3.2.3 --- TDP induced the apoptosis of HCC cells --- p.74 / Chapter 3.3 --- Study of the molecular mechanism of TDP on HCC --- p.76 / Chapter 3.3.1 --- The comparative proteomic profiling --- p.76 / Chapter 3.3.2 --- Hsp27 was one of the molecular targets of TDP in HepG2 cells. --- p.80 / Chapter 3.3.3 --- TDP induced apoptosis through the caspase-dependent mitochondrial pathway. --- p.82 / Chapter 3.3.4 --- Hsp27 involved in the mitochondrial apoptosis induced by TDP --- p.84 / Chapter 3.3.5 --- Enforced Hsp27 overexpression rescued the mitochondrial apoptosis induced by TDP in HepG2 cells --- p.87 / Chapter 3.3.6 --- The possible regulatory signaling by TDP --- p.91 / Chapter 3.4 --- TDP directly targeted Hsp27 and destroyed its chaperone action --- p.92 / Chapter 3.5 --- Degradation of Hsp27 aggregation stimulated by TDP was mediated by ubiquitin-proteasome system (UPS) pathway --- p.96 / Chapter 3.6 --- Nude mice model demonstrated the suppressive effect of TDP on HCC --- p.97 / Chapter Chapter 4 --- Discussion and Conclusions --- p.100 / Chapter 4.1 --- Discussion --- p.100 / Chapter 4.2 --- Conclusion --- p.110 / Reference --- p.111
58

Identification and characterization of pathogenetic events in the progression of human hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Hepatocellular carcinoma (HCC) is a highly malignant tumor that is prevalent in Southeast Asia and China, where hepatitis B viral (HBV) infection is the main etiologic factor. Despite a high incidence of HCC developing in patients with HBV-induced liver cirrhosis, the molecular events underlying the malignant liver progression remain largely unclear. In an effort to characterize the genetic abnormalities involved in the HBV-related liver carcinogenesis, genome-wide exploration by metaphase comparative genomic hybridization (CGH) was performed on 100 cirrhotic HCC tumors that were derived from chronic hepatitis B carriers. CGH analysis indicated chromosomal instability in both early and advanced stage tumors where common genomic copy gains on 1q, 8q and 17q, and deletions on 4q, 8p, 13q, 16q and 17p found in both groups are suggestive of early events in hepatocarcinogenesis. Nevertheless, a combined univariate and multivariate statistical analyses highlighted for the first time preferential regional 3q26-q28, 7q21-q22 and 7q34-q36 gains in association with advanced stage HCC. The novel aberrant gains identified here thus formed basis for further mapping analysis for causative genes related to HCC progression in this thesis. / Near 50% of the advanced stage HCC manifested copy gains of chr 7q21-q22. High resolution mapping analysis by cDNA microarray-based CGH nominated 13 amplified candidates within the region 7q21-q22 Analysis on the mRNA expresson levels of these genes in a cohort of primary HCC compared to paired adjacent non-tumorous liver tissues by quantitative RT-PCR (qRT-PCR) indicated the up-regulation of the PFTK1 (PFTAIRE protein kinase 1) gene as the only candidate that demonstrated a close association with advanced metastatic tumors. The effects of PFTK1 on cell proliferation, migration and invasive phenotypes were further studied to substantiate its role in HCC progression. Upon gene suppression of PFTK1 in vitro by RNA interference (RNAi), a significant reduction in chemotactic migration, cellular invasion and an inhibition on cell motility were indicated, albeit cell proliferation remained unaffected. / Sub-cellular localization study of translated PFTK1 protein indicated protein localization in both the nucleus and cytoplasm. This has led to the further investigations of potential PFTK1 function at both the transcriptional and protein levels. (Abstract shortened by UMI.) / Sy Ming Hui. / "July 2005." / Advisers: Winnie Yeo; Nathalie Wong. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3571. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 124-139). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
59

Differential expressed microRNA in the development of hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2008 (has links)
In summary, the genome-wide miRNA analyses on HCC tumors, adjacent non-malignant livers and cell lines revealed distinct differential miRNA expressions. In particular, the findings of deregulated miR-223 and miR-222 underscore the potential role for these microRNAs in the development of HCC. / In the functional examinations of miR-222, inhibition of miR-222 expression in Hep3B and HKCI-9 exerted no effect on cell viability. However, significant retardations on cell migration were observed in both Hep3B (64.5%, p=0.008) and HKCI-9 (52.5%, p=0.048). In Hep3B cells, functional knockdown of miR-222 was further shown to impede filopodia formation (p=0.0273). Coupling expression profiling from functional knockdown of miR-222 in Hep3B and HKCI-9 with pathway analysis, a number of miR-222 modulated pathways was suggested. Examination of such pathways, AKT and JAK/STAT, by Western blot analysis suggested profound decrease of total AKT and STAT3 protein in both Hep3B and HKCI-9. A corresponding diminution of phosphorylated AKT was also shown in both cell lines. In the examination of JAK/STAT pathway, reductions of phosphorylated STAT3 proteins were demonstrated in Hep3B and HKCI-9 following functional knockdown of miR-222. Parallel quantitative RT-PCR analysis did not suggest transcriptional changes of AKT and STAT3 mRNA between miR-222 inhibited cells and mock controls in Hep3B and HKCI-9. This in turn would be suggestive of a post-transcriptional repression of AKT and STAT3 proteins by miR-222 knockdown. Based on the functional characterization of miR-222, it would suggest the likelihood of miR-222 induction on HCC cell motility through modulation of the AKT and JAK/STAT signalling pathways. / MicroRNAs (miRNAs) are an abundant class of small, 19-25 nucleotides, non-coding RNAs with significant roles in transcriptional silencing and translational suppression. Recent studies have emphasized on a causative link between miRNA deregulations and cancer development. However, such information remains minimal in Hepatocellular Carcinoma (HCC). In an effort to characterize differentially expressed miRNAs in HCC development, global expression analyses on HCC tumors, paired adjacent non-malignant livers and HCC cell fines were carried out. Distinct miRNA expression pattern that was able to distinguish HCC tumors from non-malignant cirrhotic livers was suggested. Based on a comprehensive screening, 96 miRNAs showed differential expressions in HCC tumors, within which over 60% of miRNAs displayed increased expressions. / Six top ranked differentially expressed miRNAs, namely down-regulated miR-223, miR-126 and miR-122a, and up-regulated miR-222, miR-221 and miR-31 were subjected to further Northern blot validations. Amongst these verified candidates, miR-223 and miR-222 showed the most consistent expression changes that allowed unequivocal differentiation between HCC and non-tumoral liver (p≤0.002). The potential functional roles of miR-223 and miR-222 were subsequently investigated. Ectopic expression of miR-223 in 3 HCC cell fines, Hep3B, HKCI-C3 and HKCI-10, revealed a consistent growth inhibitory effect of 21-44% (p≤0.01). In an attempt to define potential downstream targets of miR-223, an integrative analysis of overexpressed genes from mRNA array with in-silico predictions was utilized. This approach allowed streamline of 386 targets to a candidate gene, Stathmin1 (STMN1). A significant inverse correlation between STMN1 mRNA and miR-223 expressions was demonstrated (p=0.006). At the protein level, restoration of miR-223 expressions in HCC cell lines resulted in substantial reduction of STMN1. Furthermore, miR-223 could repress the luciferase activity in reporter construct containing the putative recognition site at the STMN1 3'UTR. / Wong, Wing Lei. / Adviser: Nathalie Wong. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3450. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 163-171). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
60

Identification of serum biomarkers for hepatocellular carcinoma by glycoproteomic analysis. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Aim. In this study, we attempted to identify HCC-specific serum glycoproteins by using glycoproteomic technologies. We targeted at finding glycoforms with aberrant alpha-2,6-sialylation and alpha-1,6-fucosylation in sera of HCC patients. These glycoforms may have potentials to be used as tumor marker(s) in the diagnosis of HCC. / Among the validated differential glycoproteins, Hp was the only glycoprotein, glycoforms of which were found to be significantly up-regulated in the HCC group when examining both the sialylated glycoprotein profiles and the fucosylated glycoprotein profiles. This glycoprotein was selected for further investigation. In the independent validation group, increased serum levels of Hp (total), alpha-2,6 sialylated Hp and alpha-1,6 fucosylated Hp was observed in the HCC patients. A unique pattern of Hp glycoforms comprising both hypersialylated fucosylated and hyposialytated fucosylated species was found in the HCC patients. Serum concentrations of these glycoforms were significantly higher in the HCC patients with advanced tumor, suggesting their tumor-specific nature. Besides, we have performed quantitative profiling of N-glycans of serum Hp in the HCC patients, CLD patients and normal subjects, and have attempted to identify HCC-associated N-glycans for HCC diagnosis. Combined used of serum alpha-fetoprotein, serum Hp and its N-glycans, we could achieve 84% sensitivity at 100% and 93% specificities when distinguishing the HCC patients from the CLD patients and from the normal subjects, respectively. / Background. Hepatocellular carcinoma (HCC) often arises in patients with coexisting chronic liver disease (CLD). Since alpha-fetoprotein, a conventional biomarker, may also be raised in patients with uncomplicated CLD, the use of alpha-fetoprotein in early detection of HCC is limited. Identification of additional biomarkers may improve early detection. Previous studies have shown that levels of alpha-2,6-sialyltransferase and alpha-1,6-fucosyltransferase change in liver cancer, leading to aberrant glycosylations on some serum proteins. / Conclusion. By undertaking glycoproteomic approach, we have identified a panel of potential biomarkers for diagnosis of HCC. These biomarkers were useful for classifying among normal healthy subjects, CLD patients, patients with early HCC and patients with advanced HCC. Some of them were validated with the independent cases. Finally, we have identified a unique pattern of Hp glycoforms comprising both hypersialylated fucosylated and hyposialylated fucosylated species in the HCC patients. Serum Hp and its N-glycans have been shown to have potential values for aiding the diagnosis of HCC. / Methodology. There are four parts in this study. The first part is "method development". A method for obtaining quantitative profiles of serum glycoproteins with alpha-2,6-sialylation or alpha-1,6-fucosylation was developed by combined use of lectin affinity chromatography, two-dimensional polyacrylamide gel electrophoresis and enzyme-linked lectin assay. The second part is "biomarker discovery". The quantitative profiles of the serum glycoproteins from 20 HCC patients and 10 CLD patients (control) were compared by bioinformatic approaches to identify potential biomarkers for diagnosis of HCC. The protein identities of the potential targets were obtained by using MALDI-TOF/TOF mass spectrometry. The third part is "validation". An independent set of serum samples from 40 HCC patients, 30 CLD patients and 20 normal subjects was used to evaluate the diagnostic values of the potential biomarkers. The last part of this study was aimed to identify HCC-associated N-glycans on one of potential biomarkers found, and examine their values in diagnosis of HCC. / Result. When analyzing alpha-2,6-sialylated glycoproteins, 53 glycoprotein spots were significantly different between the HCC and CLD groups, of which 44 spots belonged to 13 glycoproteins. Bioinformatic analyses revealed that these differential sialoglycoprotein profiles contained valuable information for differentiating the HCC patients from CLD patients, and classifying between early HCC and advanced HCC patients. When analyzing alpha-1,6-fucosylated proteins, 11 glycoprotein spots were significant different between the two study groups, of which 8 spots belonged to 1 glycoprotein. Majority of the protein identities were successfully obtained by MALDI-TOF/TOF mass spectrometry. Among the differential glycoproteins, we have identified a subgroup with a unique pattern of glycosylation. These glycoproteins were characterized by the presence of hypersialylated and fucosylated glycoforms. The differential patterns and the diagnostic values of some of these serum glycoproteins were confirmed in the independent validation group by measuring their serum levels with immunoassays. The results of the logistic regression analyses suggest that complement factor B and haptoglobin (Hp) can be used in combination with alpha-fetoprotein to improve the diagnosis of HCC. / Ang, Ling. / Adviser: Tereng Chuen Wai Poon. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 0947. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 215-238). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / School code: 1307.

Page generated in 0.1158 seconds