• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 32
  • Tagged with
  • 32
  • 32
  • 32
  • 19
  • 18
  • 18
  • 17
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Somatic mutations of mitochondrial DNA in hepatocellular carcinoma.

January 2002 (has links)
Cheung Shiu-fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 131-139). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABSTRACT --- p.iii / 摘要 --- p.vi / TABLE OF CONTENTS --- p.ix / LIST OF FIGURES --- p.xvi / LIST OF TABLES --- p.xviii / ABBREVIATIONS --- p.xix / PUBLICATION --- p.xxi / AWARD --- p.xix / Chapter SECTION 1. --- INTRODUCTION OF HEPATOCELLULAR CARCINOMA --- p.1 / Chapter 1.1 --- Epidemiology of Hepatocellular Carcinoma --- p.1 / Chapter 1.2 --- Etiologies of HCC --- p.1 / Chapter 1.2.1 --- Hepatitis B Virus and Hepatitis C Virus --- p.2 / Chapter 1.2.2 --- Aflatoxins and Alcohol --- p.3 / Chapter 1.3 --- Major Diagnostic and Prognostic Markers of HCC --- p.4 / Chapter 1.3.1 --- Biochemical Tumor Markers --- p.5 / Chapter 1.3.2 --- Clinico-pathological Features of HCC --- p.6 / Chapter SECTION 2. --- THE MITOCHONDRION --- p.7 / Chapter 2.1 --- Structure of the Mitochondrial Genome --- p.9 / Chapter 2.1.1 --- Nicotinamide Adenine Dinucleotide Dehydrogenase --- p.10 / Chapter 2.1.2 --- Cytochrome b --- p.10 / Chapter 2.1.3 --- Cytochrome c Oxidase --- p.11 / Chapter 2.1.4 --- ATP Synthase --- p.11 / Chapter 2.1.5 --- Ribosomal RNA --- p.11 / Chapter 2.1.6 --- Transfer RNA --- p.12 / Chapter 2.1.7 --- Displacement Loop --- p.12 / Chapter 2.2 --- Replication of Mitochondrial DNA --- p.17 / Chapter 2.3 --- Transcription of Mitochondrial DNA --- p.17 / Chapter SECTION 3. --- PHYSIOLOGY OF MITOCHONDRIA --- p.19 / Chapter 3.1 --- Energy Production by Oxidative Phosphorylation (OXPHOS) --- p.19 / Chapter 3.2 --- Programmed Cell Death: Apoptosis --- p.22 / Chapter 3.3 --- Morphology of Mitochondria in Hepatocytes --- p.25 / Chapter SECTION 4. --- MUTATIONS OF MITOCHONDRIAL DNA --- p.26 / Chapter 4.1 --- Special Terms Used in This Study --- p.26 / Chapter 4.1.1 --- Somatic Mutations and Polymorphisms --- p.26 / Chapter 4.1.2 --- Homoplasmic and Heteroplasmic Mutations --- p.26 / Chapter 4.2 --- Factors Causing High Mutation Frequency in mtDNA --- p.27 / Chapter 4.2.1 --- Presence of Reactive Oxygen Species --- p.27 / Chapter 4.2.2 --- Lack of Protective Histories --- p.28 / Chapter 4.2.3 --- Limited DNA Repair Mechanism --- p.29 / Chapter 4.3 --- Theories of Homoplasmic Mutations --- p.31 / Chapter 4.3.1 --- Replicative Advantage on Mutated mtDNA Sequence Selection --- p.31 / Chapter 4.3.2 --- Random Mutagenesis and Segregation --- p.32 / Chapter 4.4 --- MtDNA Mutations in Mitochondrial Disease and Aging --- p.33 / Chapter 4.5 --- MtDNA Deletions in Cancer --- p.34 / Chapter 4.6 --- Somatic Mutations of MtDNA in Various Cancers --- p.35 / Chapter 4.6.1 --- Frequencies of Somatic Mutations --- p.35 / Chapter 4.6.2 --- Distribution of Somatic Mutations in mtDNA --- p.36 / Chapter 4.7 --- Somatic Mutations of Mitochondrial DNA in HCC --- p.37 / Chapter SECTION 5. --- OBJECTIVES OF THIS STUDY --- p.44 / Chapter SECTION 6. --- MATERIALS AND METHODS --- p.46 / Chapter 6.1 --- Patients and Samples Collection --- p.46 / Chapter 6.2 --- DNA Extraction from Liver Tissues --- p.46 / Chapter 6.3 --- Amplification of Mitochondrial DNA by Polymerase Chain Reaction --- p.51 / Chapter 6.3.1 --- Design of Primers --- p.51 / Chapter 6.3.2 --- PCR Conditions and Contents --- p.54 / Chapter 6.3.3 --- Assessment of PCR Products by Agarose Gel Electrophoresis --- p.54 / Chapter 6.4 --- Purification of PCR Products --- p.54 / Chapter 6.5 --- Cyclesequencing of Mitochondrial DNA --- p.55 / Chapter 6.5.1 --- Design of Primers --- p.55 / Chapter 6.5.2 --- PCR Contents and Cycle Sequencing Procedures --- p.56 / Chapter 6.6 --- Purification of Sequencing Products --- p.56 / Chapter 6.7 --- Sequence Analysis by Automated Sequencer --- p.57 / Chapter 6.7.1 --- Preparation of Polyacrylamide Gel --- p.57 / Chapter 6.7.2 --- Sequence Analysis by Automated Sequencer --- p.58 / Chapter 6.7.3 --- "Search for Sequence Variants, Polymorphisms and Somatic Mutations" --- p.58 / Chapter 6.8 --- Further Studies on mtDNA Mutations --- p.59 / Chapter 6.8.1 --- Sequence Analysis in Buffy Coat --- p.59 / Chapter 6.8.2 --- Detection of the Presence of Somatic mtDNA Mutations in Plasma --- p.59 / Chapter 6.8.3 --- Frequency of Mutations in Two Nucleotide Repeat Sequences --- p.60 / Chapter 6.9 --- Clinical Data and Statistical Analysis --- p.61 / Chapter 6.9.1 --- Clinical and Pathological Data --- p.61 / Chapter 6.9.2 --- Statistical Analysis --- p.61 / Chapter SECTION 7. --- RESULTS --- p.63 / Chapter 7.1 --- Sequence Analysis of the Entire Mitochondrial Genome --- p.63 / Chapter 7.1.1 --- Sequence Variants and Polymorphisms --- p.63 / Chapter 7.1.2 --- Somatic Mutations --- p.71 / Chapter 7.2 --- Study of Mitochondrial Sequence in Lymphocytes --- p.78 / Chapter 7.3 --- Detection of Tumor DNA in Serum --- p.78 / Chapter 7.4 --- Analysis of Nucleotide Repeat Sequences --- p.79 / Chapter 7.4.1 --- General Results --- p.79 / Chapter 7.4.2 --- Statistical Analysis --- p.84 / Chapter SECTION 8. --- DISCUSSION --- p.89 / Chapter 8.1 --- Comparative Analysis of mtDNA Mutations with Two Previous HCC Studies --- p.89 / Chapter 8.1.1 --- Number of Cases and Region Studied --- p.89 / Chapter 8.1.2 --- Number and Distribution of Mutations in Normal Controls --- p.89 / Chapter 8.1.3 --- Number of Somatic Mutations --- p.90 / Chapter 8.1.4 --- Distribution of Somatic Mutations --- p.91 / Chapter 8.2 --- Similarities of Somatic mtDNA Mutations in This Study with Other Cancer Types --- p.93 / Chapter 8.2.1 --- Frequency and Distribution of Somatic Mutations --- p.93 / Chapter 8.2.2 --- Number of Homoplasmic Mutations --- p.93 / Chapter 8.3 --- Evaluation of Somatic Mutations of mtDNA in This Study --- p.96 / Chapter 8.3.1 --- Specificity of Somatic Mutations in Tumor Proved by Sequence Analysis in Lymphocytes --- p.96 / Chapter 8.3.2 --- Importance of Conserved Amino Acid Sequences with Other Species to the Presence of Somatic Mutations in Tumor --- p.96 / Chapter 8.3.3 --- Four Somatic Mutation Sites Are Detected in More than One Cancer Type --- p.101 / Chapter 8.3.4 --- Presence of Homoplasmic and Heteroplasmic Mutations --- p.101 / Chapter 8.3.5 --- Absence of Large-scale Deletions in Tumor Tissues --- p.102 / Chapter 8.4 --- Mutation Hotspots Region: Hypervariable Displacement-loop --- p.103 / Chapter 8.5 --- D310 Mononucleotide Repeats --- p.106 / Chapter 8.5.1 --- Description of D310 Mononucleotide Repeats --- p.106 / Chapter 8.5.2 --- Possible Causes of Varied Sequences at D310 --- p.106 / Chapter 8.5.3 --- Appearance of Nucleotide Repeats at D310 in Tumors --- p.107 / Chapter 8.5.4 --- Possible Outcomes of D310 Aberrations in mtDNA Replication and Transcription --- p.108 / Chapter 8.5.5 --- Comparison of D310 Alternations in HCC with Other Cancers --- p.109 / Chapter 8.6 --- Other Nucleotide Repeat Sequences --- p.112 / Chapter 8.6.1 --- The CA Dinucleotide Repeats --- p.112 / Chapter 8.6.2 --- Other Nucleotide Repeat Sequences Showing Genome Instability --- p.112 / Chapter 8.7 --- Evaluation of Somatic mtDNA Mutations as a Cancer Diagnostic Marker --- p.114 / Chapter 8.7.1 --- Coding Region --- p.114 / Chapter 8.7.2 --- D-loop Region --- p.114 / Chapter 8.7.3 --- D310 Nucleotide Repeats --- p.115 / Chapter 8.7.4 --- Possibility of Detecting Somatic Mutations in Serum --- p.116 / Chapter 8.8 --- Somatic mtDNA Mutations May Be a Prognostic Marker in HCC --- p.117 / Chapter 8.8.1 --- Possible Problems in Current Prognostic Factors --- p.117 / Chapter 8.8.2 --- Interpretation of Results --- p.117 / Chapter 8.8.3 --- Prognostic Values of Somatic Mutations at D310 --- p.118 / Chapter 8.9 --- Hypothesis of Somatic MtDNA Mutations on Tumorigenesis and Tumor Progression --- p.119 / Chapter 8.9.1 --- Somatic mtDNA Mutations Decline OXPHOS and May Inactivate Apoptotic Pathways --- p.119 / Chapter 8.9.2 --- Moderate Reactive Oxygen Species Production May Promote Mitosis --- p.120 / Chapter 8.10 --- Possible Appearance of Somatic Mutations in HCC with Chronic HBV Infection --- p.123 / Chapter 8.11 --- Possibility of HBx Protein Integration to MtDNA Mutations --- p.123 / Chapter 8.12 --- Conclusions --- p.125 / Chapter SECTION 9. --- LIMITATIONS AND FURTHER STUDIES --- p.127 / Chapter 9.1 --- Limitations and Improvements of Study --- p.127 / Chapter 9.1.1 --- Small Sample Size --- p.127 / Chapter 9.1.2 --- Sequence Analysis Method --- p.127 / Chapter 9.1.3 --- Fidelity of PCR Reactions and Long-range PCR Fragments --- p.128 / Chapter 9.2 --- Further Studies --- p.129 / Chapter SECTION 10. --- REFERENCES --- p.131
12

Over expression, purification and characterization of hepatitis B virus X protein (HBx) and its interacting partner HBx - interacting protein (XIP).

January 2002 (has links)
by Cheung Yuk Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves xx-xxviii). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 摘要 --- p.iii / Table of Content --- p.iv / Abbreviations / for Amino Acids --- p.viii / for Standard Genetic Code --- p.ix / for Units --- p.x / for Prefixes --- p.xi / for Terms commonly used in the report --- p.xii / List of Figures --- p.xiii / List of Tables --- p.xiv / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Epidemiology of Hepatitis B Virus (HBV) --- p.1 / Chapter 1.2 --- Relationship between Hepatitis B Virus and Hepatocellular Carcinoma --- p.2 / Chapter 1.3 --- Brief Description of HBV Genome --- p.2 / Chapter 1.4 --- Possible Roles of HBx in Hepatocellular Carcinoma --- p.4 / Chapter 1.5 --- Novel Interacting Partner of HBx - HBx-lnteracting Protein (XIP) --- p.6 / Chapter 1.6 --- Objective --- p.6 / Chapter Chapter 2 --- Methodology / Chapter 2.1 --- Information of the HBx and XIP Clones --- p.7 / Chapter 2.2 --- "Information of the Expression Vectors (pRSETA, 6xHis-pRSETA and pET8C)" --- p.7 / Chapter 2.3 --- Sub-Cloning of HBx and XIP into Different Vectors --- p.9 / Chapter 2.3.1 --- Design of Primers for Cloning of HBx and XIP into Different Vectors --- p.9 / Chapter 2.3.2 --- Polymerase Chain Reaction (PCR) Protocol --- p.12 / Chapter 2.3.3 --- Enzyme Digestion Reaction Protocol --- p.14 / Chapter 2.3.4 --- Ligation Protocol --- p.16 / Chapter 2.3.5 --- Preparation of Competent Cells --- p.17 / Chapter 2.3.6 --- Transformation --- p.18 / Chapter 2.3.7 --- Gel Extraction Protocol --- p.19 / Chapter 2.3.7.1 --- Life Technologies CONCERT´ёØ Rapid Gel Extraction System --- p.19 / Chapter 2.3.7.2 --- QIAGEN Gel Extraction Kit --- p.20 / Chapter 2.3.8 --- Plasmid Preparation Protocol --- p.22 / Chapter 2.3.8.1 --- Life Technologies CONCERT´ёØ Rapid Plasmid Minipreps --- p.22 / Chapter 2.3.8.2 --- QIAGEN Plasmid Maxi Kit --- p.23 / Chapter 2.4 --- Expression of HBx and XIP in E. coli Strain C41 (DE3) --- p.25 / Chapter 2.4.1 --- Transformation --- p.25 / Chapter 2.4.2 --- Expression of HBx and 6xHis-HBx in E. coli Strain C41 (DE3) --- p.26 / Chapter 2.4.3 --- Expression of XIP in E. coli Strain C41 (DE3) --- p.27 / Chapter 2.5 --- Preparation of Buffers for Chromatography and Circular Dichroism Spectrum Measurement --- p.28 / Chapter 2.6 --- Purification and Refolding of HBx and His-Tagged HBx --- p.28 / Chapter 2.6.1 --- Washing of HBx and His-Tagged HBx Inclusion Bodies --- p.28 / Chapter 2.6.2 --- His-Tagged HBx Purification by Affinity Chromatography --- p.29 / Chapter 2.6.3 --- HBx Purification by Size Exclusion Chromatography --- p.30 / Chapter 2.6.4 --- Refolding of HBx and His-Tagged HBx by Oxidative Dialysis --- p.30 / Chapter 2.7 --- Purification of XIP --- p.33 / Chapter 2.7.1 --- Screening of Chromatographic Conditions for the Purification of XIP --- p.33 / Chapter 2.7.2 --- XIP 1st Step of Purification by Hydrophobic Interaction Chromatography --- p.34 / Chapter 2.7.3 --- XIP 2nd step of Purification by Size Exclusion Chromatography --- p.34 / Chapter 2.8 --- Chemical Denaturation Experiment of HBx and XIP --- p.36 / Chapter 2.8.1 --- Preparation of Urea Buffers for the Chemical Denaturation of HBx --- p.37 / Chapter 2.8.2 --- Preparation of Different GdnHCI Buffer for the Chemical Denaturation of XIP --- p.38 / Chapter 2.8.3 --- Calculation for Chemical Denaturation Experiment --- p.39 / Chapter 2.8.3.1 --- Protein Concentration Calculation --- p.39 / Chapter 2.8.3.2 --- Residual Molar Elipticity Calculation --- p.39 / Chapter 2.8.3.3 --- Free Energy Change (ΔGu) Calculation --- p.40 / Chapter 2.9 --- Two-dimensional Heteronuclear Nuclear Magnetic Resonance (NMR) Experiment --- p.41 / Chapter 2.10 --- Interaction Confirmation between HBx and XIP --- p.42 / Chapter 2.10.1 --- "Transfection of pEGFP, pEGFP-HBx and pEGFP-XIP into HepG2" --- p.42 / Chapter 2.10.2 --- Yeast Two Hybrid System for Confirmation of HBx and XIP Interaction --- p.44 / Chapter 2.10.2.1 --- Preparation of Y187 Competent Cells --- p.44 / Chapter 2.10.2.2 --- Transformation of pGBKT7-HBx and pACT2-XIP into Y187 --- p.45 / Chapter 2.10.2.3 --- β-galactosidase Colony Lift Assay --- p.46 / Chapter Chapter 3 --- "Expression, Purification and Characterization of Hepatitis B Virus X Protein (HBx)" / Chapter 3.1 --- Introduction --- p.47 / Chapter 3.2 --- Construction of Recombinant HBx-pRSETA and 6xHis-HBx-pRSETA Plasmids --- p.48 / Chapter 3.3 --- Expression of 6xHis-HBx in E. coli C41 (DE3) using M9ZB Medium --- p.52 / Chapter 3.4 --- Expression of HBx in E. coli C41 (DE3) using M9ZB Medium --- p.54 / Chapter 3.5 --- Purification and Refolding of 6xHis-HBx Fusion Proteins --- p.56 / Chapter 3.6 --- Purification and Refolding of HBx Proteins --- p.60 / Chapter 3.7 --- Structural Characterization of Refolded HBx --- p.65 / Chapter 3.7.1 --- Introduction --- p.55 / Chapter 3.7.2 --- Experimental Analysis of HBx Secondary Structure --- p.66 / Chapter 3.7.3 --- Chemical Unfolding Experiment of HBx --- p.68 / Chapter 3.8 --- Discussion --- p.70 / Chapter 3.8.1 --- "HBx was Expressed, Purified and Characterized instead of 6xHis-HBx" --- p.71 / Chapter 3.8.2 --- High Concentration of DTT was used to Minimize Formation of HBx Aggregates --- p.72 / Chapter 3.8.3 --- Oxidative Refolding to Ensure Proper Disulfide Bond Formation --- p.73 / Chapter 3.8.4 --- Computational Prediction and Experimental Prediction of Secondary Structure of HBx --- p.75 / Chapter 3.9 --- Concluding Remarks --- p.77 / Chapter Chapter 4 --- "Expression, Purification and Characterization of HBx-lnteracting Protein (XIP)" / Chapter 4.1 --- Introduction --- p.78 / Chapter 4.2 --- Construction of Recombinant XIP-pET8C --- p.78 / Chapter 4.3 --- Expression of XIP in E. coli C41 (DE3) using M9ZB and M9 Mediums --- p.82 / Chapter 4.4 --- Screening of Chromatographic Conditions for the Purification of XIP --- p.83 / Chapter 4.4.1 --- Introduction --- p.83 / Chapter 4.4.2 --- Purification Details --- p.83 / Chapter 4.5 --- Purification of XIP by HiTrap Phenyl HP 5-ml Column --- p.87 / Chapter 4.6 --- Purification of XIP by HiLoad 26/60 Superdex 75 Prep Grade --- p.89 / Chapter 4.7 --- Structural Characterization of XIP --- p.92 / Chapter 4.7.1 --- CD Spectrum --- p.92 / Chapter 4.7.2 --- Chemical Denaturation Experiment of XIP --- p.93 / Chapter 4.7.3 --- Two-Dimensional Heteronuclear Nuclear Magnetic Resonance (NMR) Spectrum of 15N Labeled XIP --- p.95 / Chapter 4.8 --- Discussion --- p.97 / Chapter 4.8.1 --- Purification Method Development --- p.97 / Chapter 4.8.2 --- "Do Different Protein Cosolutes, Protein Stabilizers and Detergents Help XIP to Adopt a Stable Conformation?" --- p.99 / Chapter 4.9 --- Concluding Remarks --- p.101 / Chapter Chapter 5 --- In vivo Studies of HBx and XIP Interactions / Chapter 5.1 --- Investigation of Sub-Cellular Localization of HBx and XIP in Liver Cells --- p.102 / Chapter 5.1.1 --- Introduction --- p.102 / Chapter 5.1.2 --- "Construction of Recombinant HBx-pECFP-C1, HBx-pEGFP-C1, HBx-pEYFP-C1 and XIP-pECFP-C1, XIP-pEGFP-C1, XIP-pEYFP-C1" --- p.103 / Chapter 5.1.3 --- Transfection of pEGFP-C1 HBx and pEGFP-C1 XIP into HepG2 to Find Out HBx and XIP Sub-Cellular Localization --- p.106 / Chapter 5.1.3.1 --- Introduction --- p.107 / Chapter 5.1.3.2 --- Investigation of EGFP Proteins Expression using the Confocal Microscope and the Leica TCS Software --- p.108 / Chapter 5.1.4 --- Discussion and Future Prospects --- p.111 / Chapter 5.2 --- Interaction of HBx and XIP Studied by Yeast Two-Hybrid System --- p.113 / Chapter 5.2.1 --- Introduction --- p.113 / Chapter 5.2.2 --- Construction of Recombinant HBx-pGBKT7 and XIP-pACT2 Plasmids --- p.114 / Chapter 5.2.3 --- Confirmation of HBx and XIP Interaction by Yeast Two-Hybrid System --- p.117 / Chapter 5.2.4 --- Discussion --- p.121 / Chapter Chapter 6 --- Conclusion --- p.123 / Appendix I Sequence of HBx and XIP --- p.I / Chapter II --- Vector Sequences --- p.II / Chapter III --- Vector Maps --- p.VI / Chapter IV --- Electrophoresis Markers --- p.XI / Chapter V --- Agarose Gel Electrophoresis --- p.XII / Chapter VI --- SDS-PAGE Eectrophoresis --- p.XIII / Chapter VII --- Medium for Bacterial Culture --- p.XV / Chapter VIII --- Medium for Cell Culture --- p.XVII / Chapter IX --- Medium for Yeast Culture --- p.XVIII / Chapter X --- Buffers for Yeast Transformation --- p.XIX / Reference --- p.XX
13

Chromosome 1 abnormalities in human hepatocellular carcinoma.

January 2002 (has links)
Lam Wai-Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves [64]-[73]). / Abstracts in English and Chinese. / Abstract (in English) --- p.i-ii / Abstract (in Chinese) --- p.iii -iv / Acknowledgements --- p.v / Table of contents --- p.vi -ix / List of Figures --- p.x / List of Tables --- p.x / Abbreviations --- p.xi -xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Hepatocellular Carcinoma (HCC) --- p.1-2 / Chapter 1.2 --- Major risk factors of HCC / Chapter (1) --- Hepatitis B Virus (HBV) --- p.2-4 / Chapter (2) --- Hepatitis C Virus (HCV) --- p.5-6 / Chapter (3) --- Cirrhosis --- p.6 / Chapter (4) --- Dietary alfatoxin B1 (AFB1) --- p.6 -7 / Chapter (5) --- Alcoholic consumption --- p.7 / Chapter (6) --- Iron overload --- p.8 / Chapter 1.3 --- Genetic aberrations in HCC --- p.8-9 / Chapter (1) --- Chromosomal loss --- p.10-13 / Chapter (2) --- Chromosomal gains --- p.13-15 / Chapter 1.4 --- roposed study --- p.15 / Chapter (1) --- Hypomethylation of heterochromatin in chromosome 1q copy number gain. --- p.16 / Chapter (2) --- ositional mapping on 1q21 - q22 by interphase cytogenetics. --- p.16-17 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Southern Blot Analysis for Satellite DNA Hypomethylation. --- p.18-19 / Chapter 2.1.2 --- ositional Mapping by Interphase Cytogenetics. --- p.19 -24 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Southern Blot Analysis for Satellite DNA Hypomethylation / Chapter (1) --- Extraction of high molecular weight DNA --- p.25 / Chapter (2) --- DNA digestion with methyl-sensitive restriction enzyme --- p.25 -26 / Chapter (3) --- Control for the complete DNA digestion. --- p.26 / Chapter (4) --- Southern Blotting. --- p.26 -27 / Chapter 2.2.2 --- ositional Mapping by Interphase Cytogenetics / Chapter (1) --- Yeast Artificial Chromosome (YAC) --- p.28 -29 / Chapter (i) --- YAC culturing --- p.29 -30 / Chapter (ii) --- YAC DNA extraction --- p.30 -31 / Chapter (iii) --- Inter-Alu-Polymerase Chain Reaction --- p.32 -33 / Chapter (2) --- -1 derived Bacterial Artificial Chromosome (PAC) --- p.34 / Chapter (i) --- AC culturing and DNA extraction --- p.34 -35 / Chapter (3) --- FISHrobe labeling by nick translation. --- p.35 / Chapter (4) --- FISHrobereparation --- p.36 / Chapter (5) --- Dot-blot analysis. --- p.36 -37 / Chapter (6) --- Verification of the YAC andACrobes by metaphase FISH --- p.37 / Chapter (7) --- Hybridization efficiency test --- p.38 / Chapter Chapter 3 --- Southern Blot Analysis for Satellite DNA Hypomethylation / Chapter 3.1 --- Introduction --- p.39 -40 / Chapter 3.2 --- Materials and Methods / Chapter (1) --- atients --- p.41 / Chapter (2) --- Mathyl-sensitive restriction enzyme digestion. --- p.42 / Chapter (3) --- Classical satellite 2 DNArobe labeling and hybridization. --- p.42 -43 / Chapter (4) --- Membrane washing and signal detection. --- p.43 / Chapter (5) --- Signal detection and reference ratio determination. --- p.43 -44 / Chapter (6) --- Comparative Genomic Hybridization (CGH) --- p.44 -45 / Chapter 3.3 --- Results / Chapter (1) --- Heterochromatin hypomethylation and 1q12 breakpoint. --- p.45 / Chapter (2) --- Heterochromatin hypomethylation in adjacent hepatitis Infected liver tissue. --- p.46 / Chapter 3.4 --- Discussion --- p.47-51 / Chapter Chapter4 --- ositional Mapping of 1q21 - q22 by Interphase Cytogenetics / Chapter 4.1 --- Introduction --- p.52-53 / Chapter 4.2 --- Materials and Methods / Chapter (1) --- atients --- p.53 / Chapter (2) --- YAC clones --- p.53 -54 / Chapter (3) --- AC clones --- p.55 / Chapter (4) --- Formalin-fixedaraffin-embedded tissue sections pretreatment. --- p.55 / Chapter (5) --- Hybridization --- p.56 / Chapter (6) --- Signal detection --- p.56 -57 / Chapter 4.3 --- Results / Chapter (1) --- Relative copy number gain on YAC examined. --- p.57 -59 / Chapter (2) --- AC findings --- p.60 / Chapter 4.4 --- Discussion --- p.60 -63 / References
14

Targeting amplicon and tumor suppressor loci in primary hepatocellular carcinoma.

January 2002 (has links)
Li Ching-wan. / Thesis submitted in: November 2001. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 104-130). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABSTRACTS (ENGLISH/CHINESE) --- p.iii / LIST OF FIGURES --- p.xi / LIST OF TABLES --- p.xiii / LIST OF ABBREVIATIONS --- p.xiv / Chapter CHAPTER1 --- INTRODUCTION / Chapter 1.1. --- Liver Cancer --- p.1 / Chapter 1.2. --- Hepatocellular Carcinoma --- p.1 / Chapter 1.2.1. --- Types of Liver Cancer --- p.1 / Chapter 1.2.2. --- Epidemiology --- p.4 / Chapter 1.2.2.1. --- Geographical Distribution --- p.4 / Chapter 1.2.2.2. --- Age and Gender Distribution --- p.8 / Chapter 1.2.3. --- Etiologic Factors --- p.9 / Chapter 1.2.3.1. --- Chronic Infection with Hepatitis B (HBV) and C (HCV) Viruses --- p.9 / Chapter 1.2.3.2. --- Aflatoxin B1 --- p.11 / Chapter 1.2.3.3. --- Alcohol --- p.12 / Chapter 1.2.3.4. --- Summary --- p.12 / Chapter 1.3. --- HCC in Hong Kong --- p.14 / Chapter 1.4. --- Role of Viral Hepatitis B in HCC --- p.17 / Chapter 1.4.1. --- HBV Genome --- p.17 / Chapter 1.4.2. --- Consequences of HBV DNA Integration --- p.17 / Chapter 1.4.2.1. --- HBV Integration --- p.17 / Chapter 1.4.2.2. --- Transactivation of Cellular Genes by HBV DNA --- p.19 / Chapter 1.4.2.3. --- Chromosomal DNA Instability --- p.20 / Chapter 1.5. --- Genetic Alterations in HCC --- p.21 / Chapter 1.5.1. --- Tumor Suppressor Gene --- p.21 / Chapter 1.5.2. --- Proto-oncogene --- p.23 / Chapter 1.5.3. --- Genetic Studies in HCC --- p.23 / Chapter 1.5.3.1. --- Loss of Heterozygosity (LOH) --- p.25 / Chapter 1.5.3.2. --- Comparative Genomic Hybridization (CGH) --- p.26 / Chapter 1.5.3.3. --- Array CGH --- p.26 / Chapter 1.5.4. --- Large-Scale Genetic Analysis in HCC --- p.27 / Chapter CHAPTER2 --- RATIONALE IN THIS STUDY --- p.35 / Chapter CHAPTER3 --- MATERIALS AND METHODS / Chapter 3.1. --- Patients and Materials --- p.38 / Chapter 3.1.1. --- DNA Extraction --- p.40 / Chapter 3.2. --- Loss of Heterozygosity Analysis on Chromosome 4q --- p.40 / Chapter 3.2.1. --- Microsatellite Markers --- p.41 / Chapter 3.2.2. --- Amplification of Target Sequences by PCR --- p.42 / Chapter 3.2.2.1. --- 5-end Labeling Primers --- p.42 / Chapter 3.2.2.2. --- Amplification of Target Sequences --- p.42 / Chapter 3.2.3. --- Denaturing Polyacrylamide Gel --- p.44 / Chapter 3.2.3.1. --- Electrophoresis --- p.44 / Chapter 3.2.4. --- Detection of Loss of Heterozygosity (LOH) --- p.45 / Chapter 3.2.5. --- Duplex PCR Analysis of Homozygous Deletion --- p.45 / Chapter 3.3. --- Amplification Analysis by Array-CGH --- p.46 / Chapter 3.3.1. --- Nick-Translation --- p.49 / Chapter 3.3.2. --- Hybridization --- p.49 / Chapter 3.3.3. --- Imaging and Data Analysis --- p.50 / Chapter 3.3.4. --- Determination of Normal Range for All Cases --- p.51 / Chapter 3.3.5. --- Assessment of Data Quality --- p.51 / Chapter 3.4. --- Statistical Analysis --- p.52 / Chapter CHAPTER4 --- RESULTS / Chapter 4.1. --- Loss of Heterozygosity Analysis on Chromosome 4q --- p.53 / Chapter 4.1.1. --- Region I of Smallest Common Deletion Region --- p.54 / Chapter 4.1.2. --- Region II of Smallest Common Deletion Region --- p.54 / Chapter 4.2. --- Amplification Analysis by Array-CGH --- p.62 / Chapter CHAPTER5 --- DISCUSSION / Chapter 5.1. --- LOH Analysis on Chromosome 4q --- p.73 / Chapter 5.1.1. --- LOH of Chromosome 4q in Various Cancers --- p.74 / Chapter 5.1.1.1. --- Hepatocellular Carcinomas --- p.74 / Chapter 5.1.1.2. --- Other Neoplasia --- p.76 / Chapter 5.1.2. --- Functional Studies on Chromosome 4 --- p.76 / Chapter 5.1.3. --- Putative Tumor Suppressors on Chromosome 4q --- p.80 / Chapter 5.1.3.1. --- Region I (4q27-q28.1) --- p.80 / Chapter 5.1.3.1.1. --- MAD2L1 (4q27) --- p.80 / Chapter 5.1.3.2. --- Region II (4q35.2) --- p.81 / Chapter 5.1.3.2.1. --- INGlL(4q35.1) --- p.81 / Chapter 5.1.3.2.2. --- FAT (4q34-q35) --- p.81 / Chapter 5.1.3.2.3. --- Caspase 3 (4q35) --- p.82 / Chapter 5.1.4. --- Limitation of this Study --- p.83 / Chapter 5.1.4.1. --- Markers --- p.83 / Chapter 5.1.4.1.1. --- Limitation of the Markers --- p.83 / Chapter 5.1.4.1.2. --- Location of the Microsatellite Markers --- p.83 / Chapter 5.1.4.2. --- Tissue Samples --- p.84 / Chapter 5.1.4.2.1. --- Normal Reference --- p.84 / Chapter 5.1.4.2.2. --- Pathologic Characterization --- p.85 / Chapter 5.1.5. --- Future Studies --- p.85 / Chapter 5.1.5.1. --- Improvement of the Experiment --- p.85 / Chapter 5.1.5.2. --- Extension of the Present Study --- p.86 / Chapter 5.2. --- Amplification Analysis by Array-CGH --- p.88 / Chapter 5.2.1. --- Amplicons Showing Amplification in HCC --- p.89 / Chapter 5.2.1.1. --- Locus of 17q23 --- p.89 / Chapter 5.2.1.1.1. --- D17S1670 --- p.89 / Chapter 5.2.1.1.2. --- RPS6KB1 --- p.91 / Chapter 5.2.1.2. --- Locus of 1q25-q31 --- p.92 / Chapter 5.2.1.2.1. --- LAMC2 --- p.92 / Chapter 5.2.1.3. --- Locus of 3q26.3 --- p.93 / Chapter 5.2.1.3.1. --- PIK3CA --- p.93 / Chapter 5.2.1.4. --- Locus of 8p22 --- p.94 / Chapter 5.2.1.4.1. --- CTSB --- p.94 / Chapter 5.2.1.5. --- Locus of 6q22 --- p.95 / Chapter 5.2.1.5.1. --- MYB --- p.95 / Chapter 5.2.1.6. --- Locus of 20ql3 --- p.96 / Chapter 5.2.1.6.1. --- CSE1L --- p.96 / Chapter 5.2.1.7. --- Locus of Ip36.2-p35.1 --- p.97 / Chapter 5.2.1.7.1. --- FGR --- p.97 / Chapter 5.2.1.8. --- Locus of 7q21.1 --- p.98 / Chapter 5.2.1.8.1. --- PGY1 --- p.98 / Chapter 5.2.2. --- Amplicons Showing Deletion in HCC --- p.99 / Chapter 5.2.2.1. --- Loss at 11ql3 and 14q32.3 --- p.99 / Chapter 5.2.3. --- Limitation of the Study --- p.100 / Chapter 5.2.3.1. --- Samples and Materials --- p.100 / Chapter 5.2.4. --- Further Study --- p.101 / Chapter 5.2.4.1. --- Confirmation of the Result in Various Levels --- p.101 / Chapter 5.2.4.2. --- Assessment of the Significant Losses on Chromosomes 11ql3 and 14ql3 --- p.101 / Chapter 5.2.5. --- Application of Microarray in Genetic Studies --- p.102 / Chapter 5.2.5.1. --- Deletion Analysis --- p.102 / Chapter 5.2.5.2 --- Tissue Microarray --- p.103 / Chapter 5.2.5.3. --- cDNA Microarray --- p.103 / Chapter chapter6 --- references --- p.104
15

Differential early gene expression in HBV X protein (HBx)-mediated hepatocarcinogenesis.

January 2002 (has links)
by Ray, Kit Ng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 112-121). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iv / Abbreviations --- p.x / List of Figures --- p.xii / List of Tables --- p.xiv / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Hepatitis B Virus (HBV) --- p.1 / Chapter 1.2 --- Hepatitis B Virus X Protein (HBx) --- p.5 / Chapter 1.2.1 --- The Genomic Structure of HBx --- p.5 / Chapter 1.2.2 --- The HBx Protein Structure --- p.6 / Chapter 1.2.3 --- Subcellular Localization of HBx --- p.7 / Chapter 1.2.4 --- Possible Functions of HBx --- p.8 / Chapter 1.3 --- Etiology of Hepatocellular Carcinoma (HCC) --- p.12 / Chapter 1.4 --- Relationship between HCC and HBx --- p.13 / Chapter 1.5 --- Aims of Study --- p.14 / Chapter 1.6 --- The Basis of Tet-On System --- p.15 / Chapter 1.7 --- The Basis of DNA Microarray --- p.18 / Chapter 1.8 --- The Basis of Two-Dimensional Electrophoresis --- p.20 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Construction of a Tet-On HBx Expressing Cell Model --- p.22 / Chapter 2.1.1 --- Cloning of HBx Gene into pTRE2 Vector --- p.22 / Chapter 2.1.1.1 --- PCR of HBx Gene --- p.22 / Chapter 2.1.1.2 --- Purification of the PCR Product --- p.23 / Chapter 2.1.1.3 --- Restriction Enzyme Digestion --- p.23 / Chapter 2.1.1.4 --- Ligation of HBx into pTRE Vector --- p.24 / Chapter 2.1.1.5 --- Transformation of the Ligation Product into Competent Cells --- p.24 / Chapter 2.1.2 --- Preparation of the Plasmid DNA --- p.24 / Chapter 2.1.2.1 --- DNA Sequencing of the Cloned Plasmid DNA --- p.25 / Chapter 2.1.3 --- Cell Culture of AML12 Cell Line --- p.26 / Chapter 2.1.4 --- Transfection of pTet-On Vector into AML12 Cells --- p.26 / Chapter 2.1.5 --- Selection of the Transfected AML12 Cells by G418 --- p.27 / Chapter 2.1.6 --- Single Clone Isolation --- p.27 / Chapter 2.1.6.1 --- Luciferase Assay for Selection of Highly Inducible Clones --- p.28 / Chapter 2.1.7 --- Second Transfection of pTRE-HBx Plasmid --- p.28 / Chapter 2.1.8 --- Selection of the Transfected Cells by Hygromycin --- p.29 / Chapter 2.1.9 --- Second Single Clone Isolation --- p.29 / Chapter 2.1.10 --- Total RNA Isolation --- p.29 / Chapter 2.1.11 --- DNase I Digestion --- p.30 / Chapter 2.1.12 --- First-Strand cDNA Synthesis --- p.31 / Chapter 2.1.13 --- RT-PCR of HBx Gene --- p.31 / Chapter 2.1.14 --- Northern Blotting --- p.32 / Chapter 2.1.15 --- Preparation of the Probe --- p.33 / Chapter 2.1.16 --- Northern Blot Hybridization --- p.33 / Chapter 2.1.17 --- 3H-Thymidine Incorporation Assay --- p.34 / Chapter 2.1.18 --- Analysis of Cell Cycle by Flow Cytometry --- p.35 / Chapter 2.2 --- Microarray Analysis of Differential Gene Expression upon HBx Induction --- p.35 / Chapter 2.2.1 --- Sample Preparation for Microarray Analysis --- p.35 / Chapter 2.2.2 --- Probe Labelling --- p.36 / Chapter 2.2.3 --- Microarray Hybridization --- p.37 / Chapter 2.2.4 --- RT-PCR of the Candidate Genes --- p.38 / Chapter 2.2.5 --- Northern Blot Analysis of the Candidate Genes --- p.39 / Chapter 2.3 --- Two-Dimensional (2D) Gel Electrophoretic Analysis --- p.40 / Chapter 2.3.1 --- Protein Sample Preparation for 2D Gel Electrophoresis --- p.40 / Chapter 2.3.2 --- First-Dimension Isoelectric Focusing (IEF) --- p.40 / Chapter 2.3.3 --- Second-Dimension SDS-PAGE --- p.41 / Chapter 2.3.4 --- Silver Stain of 2D Gel --- p.42 / Chapter 2.3.5 --- Mass Spectroscopic Analysis --- p.43 / Chapter 2.4 --- Subcellular Localization of HBx --- p.44 / Chapter 2.4.1 --- Cloning of HBx into Green Fluorescent Protein (GFP) Expression Vector --- p.44 / Chapter 2.4.2 --- Transfection of GFP-HBx --- p.44 / Chapter 2.4.3 --- Propidium Iodide (PI) Staining --- p.45 / Chapter 2.4.4 --- Mitochondria Staining --- p.45 / Chapter 2.4.5 --- Subcellular Localization Study using Epi-Fluorescent Microscopy --- p.45 / Chapter 2.5 --- Analysis of Mitochondrial Transmembrane Potential --- p.46 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Construction of Tet-On AML12 Cell Line of HBx Gene --- p.47 / Chapter 3.2 --- Characterization of the HBx-Expressing Cell Model --- p.53 / Chapter 3.2.1 --- 3H-Thymidine Proliferation Assay --- p.53 / Chapter 3.2.2 --- Cell Cycle Analysis --- p.55 / Chapter 3.3 --- Microarray Analysis of Differential Gene Expression Pattern upon HBx Induction --- p.57 / Chapter 3.4 --- Northern Blot Analysis and RT-PCR of the Candidate Genes --- p.65 / Chapter 3.5 --- Differential Protein Expression Pattern under HBx Induction --- p.70 / Chapter 3.6 --- Subcellular Localization of HBx --- p.77 / Chapter 3.7 --- Analysis of Mitochondrial Transmembrane Potential --- p.83 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Conditional HBx-Expressing Cell Model --- p.84 / Chapter 4.2 --- The Effects of HBx in Clone X18 --- p.86 / Chapter 4.2.1 --- Proliferative Effect of HBx --- p.86 / Chapter 4.2.2 --- Deregulation of G2/M Checkpoint by HBx --- p.86 / Chapter 4.3 --- Early Differential Gene Expression due to HBx Induction --- p.88 / Chapter 4.4 --- The Relationship of the Potential Candidate Genes and Cancer Development --- p.90 / Chapter 4.5 --- The Protein Expression Pattern due to HBx Induction --- p.93 / Chapter 4.6 --- The Subcellular Localization of HBx --- p.96 / Chapter 4.7 --- The Possible Involvement of HBx in Mitochondrial Transmembrane Potential --- p.98 / Chapter 4.8 --- Conclusions --- p.101 / Chapter 4.9 --- Future Prospects --- p.104 / Appendix --- p.107 / References --- p.112
16

A catalogue of genes expressed in human hepatocellular carcinoma as identified by expressed sequence tag sequencing and molecular cloning and characterization of KIAA0022.

January 2002 (has links)
Au Chi Chuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 157-169). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Table of Contents --- p.ii / Abstract --- p.v / 論文摘要 --- p.vii / Abbreviations --- p.viii / List of Figures --- p.ix / List of Tables --- p.x / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- General introduction --- p.1 / Chapter 1.2 --- Hepatitis B virus and Hepatocellular carcinoma --- p.3 / Chapter 1.3 --- Pathogenesis of HBV related HCC --- p.6 / Chapter 1.4 --- Current screening test and tumor markers --- p.10 / Chapter 1.5 --- Expressed sequence tag (EST) sequencing --- p.13 / Chapter 1.6 --- Aim of the present study --- p.15 / Chapter 1.7 --- Characterization of KIAA0022 --- p.16 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Construction of liver HCC and normal counterpart libraries --- p.19 / Chapter 2.2 --- Plating out the human liver cDNA libraries --- p.19 / Chapter 2.3 --- PCR amplification of clones human liver cancer and the normal counterpart cDNA libraries --- p.21 / Chapter 2.4 --- Cycle sequencing of cloned human liver cancer and the normal counterpart cDNA libraries --- p.21 / Chapter 2.4.1 --- Dye-primer cycle sequencing (Pharmacia) --- p.21 / Chapter 2.4.1.1 --- Using Pharmacia LBKA.L.F. DNA sequencer --- p.21 / Chapter 2.4.1.2 --- Using Li-Cor 4200 Automated DNA sequencer --- p.22 / Chapter 2.4.2 --- Dye-terminator cycle sequencing (Pharmacia) --- p.22 / Chapter 2.5 --- Sequences analysis --- p.23 / Chapter 2.6 --- Cloning of full-length cDNA of KIAA0022 --- p.24 / Chapter 2.6.1 --- Amplification of KIAA0022 gene using PCR --- p.24 / Chapter 2.6.2 --- Purification of the PCR product --- p.25 / Chapter 2.6.3 --- Ligation --- p.25 / Chapter 2.6.4 --- One Shot® TOP 10 Chemical Transformation --- p.25 / Chapter 2.6.5 --- Small-scale preparation of the plasmid DNA --- p.26 / Chapter 2.6.6 --- Large-scale preparation of the plasmid DNA Table of Contents (continued) --- p.26 / Chapter 2.6.7 --- DNA sequencing of the full-length cDNA of KIAA0022 --- p.28 / Chapter 2.7 --- Northern Hybridization --- p.29 / Chapter 2.7.1 --- The Human multiple tissue Northern Blot --- p.29 / Chapter 2.7.2 --- Synthesis of the radiolabeled DNA probe --- p.29 / Chapter 2.7.3 --- Hybridization of the Northern blot --- p.30 / Chapter 2.8 --- Subcellular localization of KIAA0022 by tagging with green fluorescence protein (GFP) --- p.30 / Chapter 2.8.1 --- Amplification and purification of the KIAA0022 gene product --- p.30 / Chapter 2.8.2 --- Restriction enzymes digestion --- p.31 / Chapter 2.8.3 --- DNA ligation --- p.31 / Chapter 2.8.4 --- Preparation of the Escherichia coli competent cells for transformation --- p.31 / Chapter 2.8.5 --- Transformation of the plasmid DNA into competent Escherichia coli cells --- p.32 / Chapter 2.8.6 --- Small-scale preparation of the plasmid DNA --- p.32 / Chapter 2.8.7 --- Large-scale preparation of the plasmid DNA --- p.32 / Chapter 2.8.8 --- DNA sequencing of the cloned plasmid DNA --- p.33 / Chapter 2.8.9 --- Transfection --- p.33 / Chapter 2.8.10 --- Fluorescence microscopy examination --- p.33 / Chapter 2.9 --- Yeast two-hybrid screening assay --- p.34 / Chapter 2.9.1 --- "Cloning of the KIAA0022 gene into the yeast two-hybrid DNA-BD vector, pGBKT7" --- p.34 / Chapter 2.9.2 --- Small-scale transformation of pGBKT7-KIAA0022 plasmid --- p.34 / Chapter 2.9.2.1 --- Preparation of yeast competent cells --- p.34 / Chapter 2.9.2.2 --- Transformation of the pGBKT7-KIAA 0022 plasmid into the yeast strain PJ69-2A --- p.35 / Chapter 2.9.3 --- Screening a pretransformed library by yeast mating --- p.35 / Chapter 2.9.4 --- β -Galactosidase analysis - colony lift filter assay --- p.36 / Chapter 2.9.5 --- Analysis of yeast plasmid inserts using PCR and DNA sequencing --- p.37 / Chapter 2.9.5.1 --- PCR --- p.37 / Chapter 2.9.5.2 --- DNA sequencing --- p.37 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Results of ESTs sequencing in normal counterpart and HCC libraries --- p.38 / Chapter 3.1.1 --- The sequencing results of the normal counterpart cDNA clones --- p.38 / Chapter 3.1.2 --- Sequencing results of the human liver cancer cDNA clones --- p.41 / Chapter 3.1.3 --- The accuracy of the automated sequencing technique --- p.41 / Chapter 3.1.4 --- Catalogue of normal counterpart ESTs --- p.45 / Chapter 3.1.5 --- Catalogue of liver cancer ESTs --- p.47 / Chapter 3.2 --- Identification of genes differentially expressed in HCC using in silico method --- p.115 / Chapter 3.3 --- Sequence analysis of KIAA0022 --- p.121 / Chapter 3.3.1 --- Structural analysis of KIAA0022 --- p.121 / Chapter 3.3.2 --- Homology alignment --- p.122 / Chapter 3.4 --- Tissue distribution and expression profile of KIAA0022 using Northern blot analysis --- p.132 / Chapter 3.5 --- Subcellular localization of the KIAA0022 tagging by green fluorescence protein --- p.134 / Chapter 3.6 --- Yeast two-hybrid screening assay --- p.136 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Large-scale partial cDNA sequencing --- p.138 / Chapter 4.2 --- Characterization of ESTs --- p.139 / Chapter 4.3 --- Identification of genes differentially expressed in liver cancer using Poisson probability --- p.143 / Chapter 4.4 --- Characterization of KIAA0022 --- p.154 / Reference --- p.157 / Appendix --- p.170
17

Functional characterization of CCCTC-binding factor (CTCF) in the pathogenesis of hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Zhang, Bin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 154-187). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
18

Functional characterization of FHL2 by microarray analysis and promoter study. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Xu, Jiaying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 98-107). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
19

Delineation of genomic imbalances on chromosome 1 and 4q in hepatocellular carcinoma.

January 2003 (has links)
Leung Ho-yin. / Thesis submitted in: July 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 104-118). / Abstracts in English and Chinese. / Acknowlegements --- p.i / Abstract (English) --- p.ii / Abstract (Chinese) --- p.iv / "Table of Contents," --- p.vi / List of Figures --- p.xi / List of Tables --- p.xii / Abbreviation --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 . --- Cancer Incidences in Hong Kong --- p.2 / Chapter 1.2. --- Hepatocellular Carcinoma (HCC) --- p.2 / Chapter 1.3. --- "Etiological Risk Factors," --- p.7 / Chapter 1.3.1. --- Liver Cirrhosis / Chapter 1.3.2. --- Chronic Viral Hepatitis / Chapter 1.3.2.1. --- Hepatitis B Virus (HBV) / Chapter 1.3.2.2. --- Hepatitis C Virus (HCV) / Chapter 1.3.3. --- Dietary Aflatoxin B1 exposure / Chapter 1.3.4. --- Heavy Alcohol Consumption / Chapter 1.3.5. --- Hemochromatosis / Chapter 1.4. --- Genetic Aberration in HCC --- p.12 / Chapter 1.4.1. --- Chromosomal Gains / Chapter 1.4.2. --- Chromosome Losses / Chapter 1.5. --- Epigenetic Changes --- p.18 / Chapter 1.6. --- Aims of Thesis --- p.20 / Chapter Chapter 2 --- Materials and Methods --- p.22 / Chapter 2.1. --- Materials --- p.23 / Chapter 2.1.1. --- Culture of Cell Lines / Chapter 2.1.2. --- Preparation of Normal Human Metaphase / Chapter 2.1.3. --- DNA Extraction from Cell Lines / Chapter 2.1.4. --- DNA Extraction from Tissues / Chapter 2.1.5. --- DNA Extraction from Blood / Chapter 2.1.6. --- Nick Translation / Chapter 2.1.7. --- Dot Blot / Chapter 2.1.8. --- Probe Preparation / Chapter 2.1.9. --- Fluorochrome-conjugated antibodies / Chapter 2.1.10. --- Fluorescence Microscopy and Image Analysis / Chapter 2.1.11. --- Primer Labeling / Chapter 2.1.12. --- Polymerase Chain Reaction / Chapter 2.1.13. --- Gel Preparation / Chapter 2.1.14. --- Gel Electrophoresis / Chapter 2.2. --- Sample --- p.28 / Chapter 2.2.1. --- Patients / Chapter 2.2.2. --- Cell Lines / Chapter 2.3. --- Comparative Genomic Hybridization --- p.30 / Chapter 2.3.1. --- Method / Chapter 2.3.1.1. --- Preparation of Normal Human Metaphase / Chapter 2.3.1.2. --- DNA Extraction / Chapter 2.3.1.3. --- Nick Translation / Chapter 2.3.1.4. --- Labeling Efficiency / Chapter 2.3.1.5. --- Probe Preparation / Chapter 2.3.1.6. --- Slide Preparation / Chapter 2.3.1.7. --- Hybridization / Chapter 2.3.1.8. --- Post Hybridization Wash / Chapter 2.3.1.9. --- Image Capturing and Analysis / Chapter 2.3.1.10. --- Control Experiment / Chapter 2.4. --- Microsatellite Analysis --- p.46 / Chapter 2.4.1. --- Method / Chapter 2.4.1.1. --- Fluorescent-Labeled Polymorphic Markers / Chapter 2.4.1.1.1. --- Polymerase Chain Reaction / Chapter 2.4.1.1.2. --- Gel Preparation / Chapter 2.4.1.1.3. --- Gel Electrophoresis / Chapter 2.4.1.1.4. --- Data Analysis / Chapter 2.4.1.2. --- Radioisotope-Labeled Polymorphic Markers / Chapter 2.4.1.2.1. --- Primer Labeling / Chapter 2.4.1.2.2. --- Polymerase Chain Reaction / Chapter 2.4.1.2.3. --- Gel Preparation / Chapter 2.4.1.2.4. --- Gel Electrophoresis / Chapter 2.4.1.2.5. --- Autoradiography and Data Analysis / Chapter 3. --- Chapter 3 Genetic Imbalances on Chromosome 1 --- p.55 / Chapter 3.1. --- Introduction --- p.56 / Chapter 3.2. --- Methods --- p.57 / Chapter 3.2.1. --- Patients and Cell Lines / Chapter 3.2.2. --- CGH / Chapter 3.2.3. --- MSA with Fluorescent-labeled Polymorphic Markers / Chapter 3.2.4. --- Refinement of lp36 loss / Chapter 3.2.5. --- Investigation of Homozygous Deletion in lp36 / Chapter 3.3. --- Results --- p.63 / Chapter 3.3.1. --- CGH / Chapter 3.3.2. --- MSA on Primary HCC Cases / Chapter 3.3.3. --- Refinement of lp36 loss / Chapter 3.3.4. --- Investigation of Homozygous Deletion in lp36 / Chapter 3.3.5. --- CGH vs MSA / Chapter 3.4. --- Discussion --- p.74 / Chapter 4. --- Chapter 4 Genetic Imbalances on Chromosome 4q --- p.78 / Chapter 4.1. --- Introduction --- p.79 / Chapter 4.2. --- Methods --- p.82 / Chapter 4.2.1. --- Patients and Cell Lines / Chapter 4.2.2. --- CGH / Chapter 4.2.3. --- MSA with Radioisotope-labeled Polymorphic Markers / Chapter 4.3. --- Results --- p.86 / Chapter 4.3.1. --- CGH / Chapter 4.3.2. --- MSA / Chapter 4.3.2.1. --- MSA on Primary HCC cases / Chapter 4.3.2.2. --- MSA on In-house developed HCC cell lines / Chapter 4.3.2.3. --- Combined MSA Results / Chapter 4.4. --- Discussion --- p.94 / Chapter 5. --- Chapter 5 Proposed Future Studies --- p.99 / Chapter 5.1. --- "Microarray Analysis," --- p.101 / Chapter 5.2. --- Functional Studies --- p.102 / Chapter 6. --- Bibliography --- p.104
20

Genetic alterations in doxorubicin resistant hepatocellular carcinoma cells: a combined spectral karyotyping, positional expression profiling and candidate genes study.

January 2004 (has links)
Hu Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 95-122). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract (in English) --- p.ii / Abstract (in Chinese) --- p.iv / Table of contents --- p.vi / List of figures --- p.x / List of tables --- p.xi / Abbreviations --- p.vii / Chapter CHAPTER ONE: --- INTRODUCATION --- p.1 / Chapter 1.1 --- Hepatocellular Carcinoma --- p.2 / Chapter 1.1.1. --- Epidemiology of HCC --- p.2 / Chapter 1.1.2. --- The major risk factors --- p.2 / Chapter 1.1.3. --- Management of HCC --- p.3 / Chapter 1.2 --- Mechanisms of multidrug resistance (MDR) in cancer cells --- p.4 / Chapter 1.2.1. --- Major mechanisms in reduced drug accumulation --- p.5 / Chapter 1.2.1.1. --- P-glycoprotein (P-gp) --- p.6 / Chapter 1.2.1.2. --- Multidrug Resistance-associated Protein (MRP) --- p.7 / Chapter 1.2.1.3. --- Other effluxes --- p.8 / Chapter 1.2.2. --- Inhibition of apoptotic signaling pathways --- p.11 / Chapter 1.2.2.1. --- TP53 and multidrug resistance --- p.11 / Chapter 1.2.2.2. --- Anti-oncogene PTEN and drug resistance --- p.13 / Chapter 1.2.2.3. --- Influence of BCL2 family on drug resistance --- p.14 / Chapter 1.3 --- The chemotherapeutic agent of doxorubicin --- p.15 / Chapter 1.4 --- Aims of study --- p.18 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.20 / Chapter 2.1 --- Cell culture --- p.21 / Chapter 2.1.1 --- Cell lines and cell culture --- p.21 / Chapter 2.1.2 --- Subculture --- p.23 / Chapter 2.1.3 --- Cryopreservation --- p.23 / Chapter 2.1.4 --- Recovery of cryopreserved culture --- p.24 / Chapter 2.1.5 --- Cell number counting --- p.24 / Chapter 2.2 --- MTT experiments --- p.26 / Chapter 2.2.1 --- Determination of cell seeding density --- p.26 / Chapter 2.2.2 --- Cytotoxic assay --- p.27 / Chapter 2.3 --- Spectral Karytyping (SKY) --- p.27 / Chapter 2.3.1 --- Pretreatment of chromosome slides for SKY --- p.28 / Chapter 2.3.2 --- Hybridization --- p.28 / Chapter 2.3.3 --- Detection --- p.29 / Chapter 2.4 --- Positional expression profiling --- p.30 / Chapter 2.4.1 --- RNA extraction --- p.32 / Chapter 2.4.2 --- Reverse transcription and cDNA labling --- p.34 / Chapter 2.4.3 --- Probe purification and hybridization --- p.34 / Chapter 2.4.4 --- Image acquisition and data analysis --- p.35 / Chapter 2. 5 --- Quantitative RT-PCR --- p.37 / Chapter 2.5.1 --- RNA extraction --- p.37 / Chapter 2.5.2 --- Primer design --- p.37 / Chapter 2.5.3 --- Reverse transcription --- p.37 / Chapter 2.5.4 --- Quantitative PCR --- p.39 / Chapter 2.6. --- Statistical analysis --- p.40 / Chapter CHAPTER 3 --- RESULTS --- p.43 / Introduction --- p.44 / Chapter 3.1 --- Doxorubicin resistance in HCC cell lines --- p.44 / Chapter 3.2 --- Candidate drug resistance genes --- p.56 / Chapter 3.3 --- The roles of chromosomal instability --- p.58 / Chapter 3.4 --- Candidate resistance genes identified in chromosome 10 --- p.69 / Chapter CHAPTER 4 --- DISCUSSION --- p.75 / Introduction --- p.76 / Chapter 4.1 --- In vitro cell models facilitate drug resistance investigations --- p.11 / Chapter 4.2 --- Aneuploidy and DX resistance --- p.78 / Chapter 4.3 --- The role of known resistance genes on chromosome 10 --- p.79 / Chapter 4.4 --- Identification of novel DX resistance genes on chromosome 10 --- p.80 / Chapter 4.5 --- Common drug resistance genes --- p.83 / Chapter 4.5.1. --- The roles of classical drug resistance --- p.85 / Chapter 4.5.2. --- Inhibition of apoptosis and deregulation of cell cycle --- p.86 / Chapter CHAPTER 5 --- PROPOSED FUTURE STUDIES --- p.90 / Chapter 5.1. --- Validate significant in vitro findings by clinical trials --- p.91 / Chapter 5.2. --- Molecular mechanisms in inactivation of ECHS1 in resistant cells --- p.92 / Chapter 5.3. --- Future utilization of cDNA microarray data --- p.93 / REFERENCES --- p.95 / PUBLICATION --- p.122

Page generated in 0.0806 seconds