Spelling suggestions: "subject:"cardiac compression"" "subject:"cardiac 8compression""
1 |
Correction, Depression, Cardiac Compression and Haller Indices Fail to Correlate with Cardiopulmonary Impairment in Pectus ExcavatumDonato, Britton 29 March 2018 (has links)
A Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine. / compression of the
right atrium and ventricle yet their LV function is
within normal range. In the setting of normal LV
function, symptomatic PE could potentially be the
result of right heart compression causing right heart
strain. Emphasis should therefore be placed on
analyzing the presence and degree of right heart
strain in patients with symptomatic pectus
excavatum.
When assessing for a correlation between the HI, CI,
DI, or CCI together and independently with
cardiopulmonary impairment, no significant
relationships were identified. While it would be highly
advantageous for a PE severity index to correlate with
objective physiologic impairment, our data suggest
that the currently defined indices fail to do so.
Data confirming such a correlation would provide a
means to measure both the severity of deformity
and changes in functional disability in patients with
PE. We aim to analyze the correlation between the
HI and three new indices with cardiopulmonary
impairment using the cardiopulmonary exercise
test (CPET). In this study we evaluated the
correlation of the Haller, correction, depression,
and cardiac compression indices with functional
cardiopulmonary impairment using preoperative
cardiopulmonary exercise test (CPET) data. We
hypothesize that the correction and cardiac
compression indices will be strongly correlated with
physiologic impairment in patients with PE, thus
providing a novel means to measure functional
disability as a function of disease severity.
Study Design
This is a retrospective study of 71 children between
the ages of birth and 18 years of age who
underwent evaluation for corrective surgery for
pectus excavatum between 2010 and 2016 at
Phoenix Children’s Hospital. Our final sample
underwent preoperative computed tomography
(CT) or MRI scan results as well as
cardiopulmonary exercise testing. For each
patient, the HI, CI, DI, and CCI were independently
assessed using the PACS System by a single rater.
Preoperative functional capacity was determined
by measurement of peak oxygen consumption
(VO2max reported as percent predicted) and
stroke volume (a surrogate for cardiac output)
which was assessed via the O2 pulse
(VO2max/heart rate) reported as percent predicted.
The possible values range from zero to 100% of
the predicted value.
Assessments
Halller Index Correction Index
Depression Index Cardiac Compression Index
Correction, Depression, Cardiac Compression and Haller Indices Fail to Correlate with
Cardiopulmonary Impairment in Pectus Excavatum
Abstract Results
Background: Pectus excavatum (PE) affects 1 in
every 300 to 1,000 live births with a male to female
ratio of 5:1, making it the most common congenital
chest wall deformity in children. The standard for
determining disease severity has become the Haller
Index, which has been shown to poorly correlate with
physiologic impairment. Recently, more novel indices
have been introduced in an effort to more effectively
represent disease burden. We aim to analyze the
correlation between these indices and
cardiopulmonary impairment in patients with PE using chest CT/ MRI as well as preoperative
cardiopulmonary exercise testing data.
Conclusions: We found that when assessing for a
correlation between the HI, CI, DI, or CCI together and
independently with cardiopulmonary impairment, both
the linear and multiple regression models failed to
identify a statistically significant relationship. While it
would be highly advantageous for a PE severity index
to correlate with objective physiologic impairment, our
data suggest that the currently defined indices fail to do so.
|
2 |
Comparison of Vascular Pulsatility in the Native Beating Heart versus Direct Mechanical Ventricular Actuation Support of the Fibrillating HeartWright, Nathan Victor 03 May 2016 (has links)
No description available.
|
3 |
Alterations in Cardiac Motions of the Failing Heart during Direct Mechanical Ventricular ActuationSchmitt, Benjamin Allyn 03 June 2021 (has links)
No description available.
|
4 |
Développement d’un dispositif médical implantable d’assistance ventriculaire par compression cardiaque directe : l’exosquelette cardiaque / Development of an implantable medical device for ventricular assistance by direct cardiac compression : «The Cardiac Exoskeleton »Chalon, Antoine 18 December 2018 (has links)
L’assistance ventriculaire constitue une voie thérapeutique prometteuse de l’insuffisance cardiaque terminale. En dépit des progrès, notamment dans le développement des assistances de type shunt ventriculo-aortique, les écueils relatifs à l’encombrement, à l’alimentation et/ou aux interactions avec le sang de ces dispositifs limitent leur application clinique. Récemment, le concept de Compression Cardiaque Directe (DCC) apparaît comme une piste prometteuse en palliant les difficultés sus-citées. Dans ce travail de thèse, nous avons mis l’accent sur la conception et le test de faisabilité d’une solution de Compression Cardiaque Directe de type mécanique et entièrement implantable appelée l’Exosquelette Cardiaque. Notre travail expérimental a porté, dans un premier temps, sur la conception assistée par ordinateur et sur la modélisation numérique permettant ainsi d’optimiser et de prédire (i) les interactions tissus myocardiques/dispositifs et (ii) les pressions ventriculaires générées. Ensuite, un prototype fonctionnel a été réalisé par fabrication additive (titane, polymères) en s’appuyant sur les données issues de la modélisation et en respectant les contraintes énergétiques, mécaniques et architecturales anatomiques. Enfin, nous avons conduit une phase d’évaluation du potentiel de ce dispositif original sur un modèle de cœur ex vivo. Nous avons pu concevoir et valider un modèle numérique fondé sur le principe des éléments finis. Ce modèle à la fois simple et robuste, a permis de simuler (i) l’impact des points de fixation du dispositif sur le tissu cardiaque, (ii) l’efficacité de la compression externe sur la genèse des pressions intraventriculaires et (iii) l’influence de la compression mécanique externe sur le tissu cardiaque. Le prototype issu de ce travail de thèse a pu produire des résultats prometteurs concernant (i) la restauration physiologique de la pression intraventriculaire, (ii) la consommation énergétique suffisamment basse et (iii) le design compatible avec les contraintes anatomiques thoracique. L’ensemble de ces résultats esquissent la possibilité d’une implantation totale de l’Exosquelette Cardiaque chez le patient / Ventricular assistance is a promising therapeutic pathway for terminal chronic heart failure. Notwithstanding the progress made for the development of aorto-ventricular shunt pump among other things, the difficulties relatives to footprint, power supply and/or blood-device interactions are somehow limiting their clinical applications. Recently, direct cardiac compression (DCC) was suggested as a promising lead to overcome the difficulties mentioned above. In this work, we focused on the design and the feasibility of an implantable and mechanical Direct Cardiac Compression device called: The Cardiac Exosqueleton. Our experimental work used Computer Assisted Design (CAD) and numerical modeling to optimize and predict (i) tissue-device interactions and (ii) pressure generation inside ventricular cavities. Then, a functional prototype was realized by additive manufacturing (titanium, polymer) with the help of modeling data and with respect to the anatomical, mechanical and energetical limitations. Finally, we conducted an evaluation of the ability of our device on both in vitro setup and ex vivo heart. We were able to conceive and validate a numerical model based on finite element techniques. This simple yet robust model allowed us to study (i) the impact of suture fixation of a device at the apex of the heart, (ii) the influence of the direct cardiac compression on intracardiac pressures and (iii) overall and local tissue stress in the myocardium. Our prototype showed promising results concerning (i) the restoration of physiological intraventricular pressures, (ii) a low energy consumption and (iii) a shape that is compatible with the thoracic anatomical constraints. All of these results allow us to envision a total implantation of the cardiac exoskeleton into the patient
|
Page generated in 0.087 seconds