• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Combined experimental and computational investigation into inter-subject variability in cardiac electrophysiology

Britton, Oliver Jonathan January 2015 (has links)
The underlying causes of variability in the electrical activity of hearts from individuals of the same species are not well understood. Understanding this variability is important to enable prediction of the response of individual hearts to diseases and therapies. Current experimental and computational methods for investigating the behaviour of the heart do not incorporate biological variation between individuals. In experimental studies, experimental results are averaged together to control errors and determine the average behaviour of the studied organism. In computational studies, averaged experimental data is usually used to develop models, and these models therefore represent a 'typical' organism, with all information on variability within the species having been lost. In this thesis we develop a methodology for modelling variability between individuals of the same species in cardiac cellular electrophysiology, motivated by the inability of traditional computational modelling approaches to capture experimental variability. A first study is conducted using traditional modelling approaches to investigate potentially pro-arrhythmic abnormalities in rabbit Purkinje fibres. A comparison with experimental recordings highlights their wide variability and the inability of existing computer modelling approaches to capture it. This leads to the development of a novel methodology that integrates the variability observed in experimental data with computational modelling and simulation, by building experimentally-calibrated populations of computational models, that collectively span the variability seen in experimental data. We apply this methodology to construct a population of rabbit Purkinje cell models. We show that our population of models can quantitatively predict the range of responses, not just the average response, to application of the potassium channel blocking drug dofetilide. This demonstrates an important potential application of our methodology, for predicting pro-arrhythmic drug effects in safety pharmacology. We then analyse a data set of experimental recordings from human ventricular tissue preparations, and use this data to develop a population of human ventricular cell models. We apply this population to study how variability between individuals alters the susceptibility of cardiac cells to developing drug-induced repolarisation abnormalities. These abnormalities can increase the chance of fatal arrhythmias, but the mechanisms that determine individual susceptibility are not well-understood.
12

Segmentation of 2D-echocardiographic sequences using level-set constrained with shape and motion priors / Segmentation de séquences échocardiographiques 2D par ensembles de niveaux contraints par a priori de forme et de mouvement

Dietenbeck, Thomas 29 November 2012 (has links)
L’objectif de cette thèse est de proposer un algorithme de segmentation et de suivi du myocarde basé sur le formalisme des ensembles de niveaux. Nous modélisons dans un premier temps le myocarde par un modèle géométrique (hyperquadriques) qui permet de représenter des formes asymétriques telles que le myocarde tout en évitant une étape d’apprentissage. Ce modèle est ensuite inclus dans le formalisme des ensembles de niveaux afin de servir de contrainte de forme lors de la segmentation simultanée de l’endocarde et de l’épicarde. Ce terme d’a priori de forme est couplé à un terme local d’attache aux données ainsi qu’à un terme évitant la fusion des deux contours. L’algorithme est validé sur 80 images en fin systole et en fin diastole segmentées par 3 cardiologues. Dans un deuxième temps, nous proposons de segmenter l’ensemble d’une séquence en utilisant l’information de mouvement. Dans ce but, nous faisons l’hypothèse de conservation des niveaux de la fonction implicite associée à l’ensemble de niveaux et l’exprimons comme une énergie dans un formalisme variationnel. Cette énergie est ensuite ajoutée à l’algorithme décrit précédemment pour la segmentation statique du myocarde afin de contraindre temporellement l’évolution du contour. L’algorithme est alors validé sur 20 séquences échocardiographiques (soit environ 1200 images) segmentées par 2 experts. / The aim of this work is to propose an algorithm to segment and track the myocardium using the level-set formalism. The myocardium is first approximated by a geometric model (hyperquadrics) which allows to handle asymetric shapes such as the myocardium while avoiding a learning step. This representation is then embedded into the level-set formalism as a shape prior for the joint segmentation of the endocardial and epicardial borders. This shape prior term is coupled with a local data attachment term and a thickness term that prevents both contours from merging. The algorithm is validated on a dataset of 80 images at end diastolic and end systolic phase with manual references from 3 cardiologists. In a second step, we propose to segment whole sequences using motion information. To this end, we apply a level conservation constraint on the implicit function associated to the level-set and express this contraint as an energy term in a variational framework. This energy is then added to the previously described algorithm in order to constrain the temporal evolution of the contour. Finally the algorithm is validated on 20 echocardiographic sequences with manual references of 2 experts (corresponding to approximately 1200 images).
13

Modélisation et simulation de l’IRM de diffusion des fibres myocardiques / Modeling and simulation of diffusion magnetic resonance imaging for cardiac fibers

Wang, Lihui 21 January 2013 (has links)
L’imagerie par résonance magnétique de diffusion (l’IRMd) est actuellement la seule technique non-invasive pour étudier l’architecture tridimensionnelle des fibres myocardiques du cœur humain à la fois ex vivo et in vivo. Cependant, il est difficile de savoir comment les caractéristiques de diffusion calculées à partir des images de diffusion reflètent les propriétés des microstructures du myocarde à cause de l’absence de la vérité-terrain sans parler de l’influence de divers facteurs tels que la résolution spatiale, le bruit et les artéfacts. L'objectif principal de cette thèse est donc de développer des simulateurs de l’IRM de diffusion basés sur des modèles réalistes afin de simuler, en intégrant différentes modalités d'imagerie, les images pondérées en diffusion des fibres myocardiques à la fois ex vivo et in vivo, et de proposer un outil générique permettant d’évaluer la qualité de l’imagerie et les algorithmes de traitement d’images. Pour atteindre cet objectif, le présent travail se focalise sur quatre parties principales. La première partie concerne la formulation de la théorie de simulation IRMd pour la génération d’images de diffusion et pour les applications sur les modèles simples de fibres cardiaques chez l’homme, et essaie de comprendre la relation sous-jacente entre les propriétés mesurées de la diffusion et les caractéristiques à la fois physiques et structurelles des fibres cardiaques. La seconde partie porte sur la simulation des images de résonance magnétique de diffusion à différentes échelles en s’appuyant sur des données du cœur humain issues de l'imagerie par lumière polarisée. En comparant les propriétés de diffusion à différentes échelles, la relation entre la variation de la microstructure et les propriétés de diffusion observée à l'échelle macroscopique est étudiée. La troisième partie consacre à l’analyse de l'influence des paramètres d'imagerie sur les propriétés de diffusion en utilisant une théorie de simulation améliorée. La dernière partie a pour objectif de modéliser la structure des fibres cardiaques in vivo et de simuler les images de diffusion correspondantes en combinant la structure des fibres cardiaques et le mouvement cardiaque connu a priori. Les simulateurs proposés nous fournissent un outil générique pour générer des images de diffusion simulées qui peuvent être utilisées pour évaluer les algorithmes de traitement d’images, pour optimiser le choix des paramètres d’IRM pour les fibres cardiaque aussi bien ex vivo que in vivo, et pour étudier la relation entre la structure de fibres microscopique et les propriétés de diffusion macroscopiques. / Diffusion magnetic resonance imaging (dMRI) appears currently as the unique imaging modality to investigate noninvasively both ex vivo and in vivo three-dimensional fiber architectures of the human heart. However, it is difficult to know how well the diffusion characteristics calculated from diffusion images reflect the microstructure properties of the myocardium since there is no ground-truth information available and add to that the influence of various factors such as spatial resolution, noise and artifacts, etc. The main objective of this thesis is then to develop realistic model-based dMRI simulators to simulate diffusion-weighted images for both ex vivo and in vivo cardiac fibers by integrating different imaging modalities, and propose a generic tool for the evaluation of imaging quality and image processing algorithms. To achieve this, the present work focuses on four parts. The first part concerns the formulation of basic dMRI simulation theory for diffusion image generation and subsequent applications on simple cardiac fiber models, and tries to elucidate the underlying relationship between the measured diffusion anisotropic properties and the cardiac fiber characteristics, including both physical and structural ones. The second part addresses the simulation of diffusion magnetic resonance images at multiple scales based on the polarized light imaging data of the human heart. Through both qualitative and quantitative comparison between diffusion properties at different simulation scales, the relationship between the microstructure variation and the diffusion properties observed at macroscopic scales is investigated. The third part deals with studying the influence of imaging parameters on diffusion image properties by means of the improved simulation theory. The last part puts the emphasis on the modeling of in vivo cardiac fiber structures and the simulation of the corresponding diffusion images by combining the cardiac fiber structure and the a priori known heart motion. The proposed simulators provide us a generic tool for generating the simulated diffusion images that can be used for evaluating image processing algorithms, optimizing the choice of MRI parameters in both ex vivo and in vivo cardiac fiber imaging, and investigating the relationship between microscopic fiber structure and macroscopic diffusion properties.

Page generated in 0.069 seconds