Spelling suggestions: "subject:"cardiac conduction disorders"" "subject:"ardiac conduction disorders""
1 |
The search for the PFHBI gene : refining the target area and identification and analysis of candidate gene transcriptsArieff, Zainunisha 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2004. / ENGLISH ABSTRACT: Progressive familial heart block I (PFHBI) is an inherited autosomal dominant cardiac
conduction disorder which segregates in a large South African (SA) pedigree, two
smaller SA families and a Lebanese family. It specifically affects conduction in the
ventricles and is of unknown cause. Clinically, PFHBI is detected on electrocardiogram
(ECG) by evidence of bundle-branch disease, i.e., as right bundle branch block, left
anterior or posterior hemiblock, or complete heart block with broad QRS complexes. The
PFHBI-causative gene was mapped to a lOcM region on chromosome 19ql3.3 using
linkage analysis, and the locus was subsequently reduced to 7cM by genetic fine
mapping.
The present study involved a multi-strategy approach to search for the PFHBI gene. The
objectives were the further reduction of the PFHBI locus by genetic fine mapping using
published and novel markers, searching for short gene transcripts from publicly available
databases and the generation of an integrated map of the locus to which genes were
mapped. Prioritised genes were screened for PFHBI-causing mutations and, in addition,
the PFHBI locus was searched for the presence of a G protein-encoding gene (PI 15-
RhoGEF), a connexin (Cx) gene and any genes containing a CTG repeat expansion motif,
since these genes are plausible PFHBI candidate genes.
Genotyping and fine genetic mapping using known and novel polymorphic dinucleotide
(CA)n and novel tetranucleotide (A3G)n repeat markers across the PFHBI locus were
performed. Publicly available databases, such as LLNL (Livermore, USA), and
GENEMAP (NCBI) were searched for ESTs which, in turn, were extended using
clustering programmes, such as UNIGENE (NCBI) and STACK (SANBI), and the
resulting consensus sequences were subsequently BLAST-searched against the protein
databases. Using the available data, an integrated physical and genetic map of the PFHBI
locus was generated and, as the HGP progressed, a number of novel genes were placed
thereon. Subsequently, genes were prioritised on the basis of position, function and expression profile.
Genetic fine mapping reduced the PFHBI locus from 7cM to 4cM. The EST approach
yielded 38 ESTs, of which 24 ESTs matched proteins, such as activating transcription
factor 5 (ATF5), actin-binding protein (KPTN) and zinc finger protein 473 (ZFP473)
(May 2003). All the map data generated experimentally and computationally were placed
on the PFHBI map. The PI 15-RhoGEF was excluded as a PFHBI candidate gene and
although homologous sequences to connexin 37 (Cx37) was located on both chromosome
19 radiation hybrid clones (RHG12 and ORIM-7), it was not identified on the DNA
clones spanning the PFHBI locus. No evidence of an expansion of a CTG repeat motif
sequence in PFHBI-affected individuals was found. Five highly prioritised candidate
genes, namely, 5CZ2-associated X protein (BAX), potassium voltage-gated channel
Shaker-related subfamily member 7 (KCNA7’), potassium inwardly-rectifying channel,
subfamily J, member 14 (KIR2.4), lin-7 homolog B {LIN-7B) and glycogen synthase 1
(GSYI) were selected for mutation screening. No disease associated mutations were
identified in the exonic and flanking intronic regions of these genes.
In summary, this study reduced the PFHBI locus substantially and generated a detailed
map of the region. A number of attractive candidate genes were excluded from causing
PFHBI; however, several plausible candidate genes are still present at this gene-rich
locus and remain to be screened. Identifying the PFHBI-causative gene and associated
mutation will provide a platform for further studies to understand the pathophysiology,
not only of PFHBI, but also of other more commonly occurring conduction disturbances. / AFRIKAANSE OPSOMMING: Progressiewe familiele hartblok I (PFHBI) is ‘n autosomaal dominant oorerflike kardiale
geleidingstoomis wat in ‘n groot Suid-Afrikaanse (SA) familie, twee kleiner SA families en ‘n
Lebanese familie segregeer. Dit affekteer hoofsaaklik die geleiding in die ventrikels en die oorsaak
daarvan is onbekend. Klinies word PFHBI op elektrokardiogram (EKG) geidentifiseer as a
bondeltak-siekte, naamlik, as regter bondeltakblok, linker anterior of posterior hemiblok, of
volledige hartblok met wye QRS komplekse. Die PFHBI-veroorsakende geen is voorheen deur
koppelingsanalise tot ‘n lOcM gebied op chromosoom 19ql3.3 gekarteer, en daaropvolgens is die
lokus verklein tot 7cM deur genetiese fyn kartering.
Die huidige studie behels ‘n veelvuldige-strategie benadering in die soektog na die PFHBI geen.
Die doel van die studie was die verdere verkleining van die PFHBI lokus deur gebruik te maak van
beide gepubliseerde en nuwe genetiese merkers, die identifisering van kort geentranskripte (ESTs)
uit publieke databanke en die generasie van ‘n geintegreerde kaart van die lokus. Geprioritiseerde
gene is geanaliseer vir die PFHBI-veroorsakende mutasie en, daarby, is die PFHBI lokus deursoek
vir die teenwoordigheid van ‘n G proteien-enkodeeringsgeen (PIJ5-RhoGEF), ‘n konneksien (Kx)
geen en enige gene wat ‘n uitgebreide CTG-herhalingsmotief bevat, aangesien hierdie gene as sterk
PFHBI kandidaatgene geag is.
Genotipering en fynkartering deur die gebruik van bekende asook nuwe polimorfiese dinukleotied-
[(CA)n] en nuwe tertranukleotied- [(A3G)n] herhalingsmerkers wat die PFHBI lokus oorbrug, is
uitgevoer. Publieke databanke, soos LLNL (Livermore, USA), en GENEMAP (NCBI) is ondersoek
vir ESTs wat vervolgens verleng is deur gebruik te maak van groeperende programme soos
UNIGENE (NCBI) en STACK (SANBI) en die gevolglike konsensus volgordes is daama met
behulp van BLAST geanaliseer teen die protei'endatabanke. Die bekomde data is vervolgens gebruik om ‘n geintegreerde fisiese en genetiese kaart van die PFHBI lokus te produseer en, soos
die mens genoomprojek gevorder het, is nuwe gene daarop geplaas. Daarna is gene geprioritiseer
vir mutasie analise gebaseer op posisie, funksie en uitdrukkingsprofiele.
Genetiese fynkartering het die PFHBI lokus van 7cM tot 4cM verklein. Die EST benadering het 38
ESTs gei'dentifiseer, waarvan 24 ESTs proteien gelyke gehad het, bv aktiverende transkripsie faktor
5 (ATF5), aktien-verbindingsprotei'en (KPTN) en sink-vingerproteien 473 (ZFP473) (Mei 2003). A1
die karterings data wat eksperimenteel en rekenaar-gewys gegenereer is, is op die PFHBI kaart
geposisioneer. Die P115-RhoGEF is uitgeskakel as ‘n PFHBI kandidaatgeen en alhoewel ’n
volgorde met homologie aan konneksien37 (Kx37) gevind is op albei chromosoom 19 radiasiehibried
klone (RGH12 and ORIM-7), is dit nie gei'dentifiseer in die DNS klone wat die PFHBI
lokus oorbrug nie. Geen bewyse van uitbreiding van CTG herhalingsmotiewe is gevind in PFHBIaangetasde
persone nie. Vyf hoogs-geprioritiseerde kandidaat gene, naamlik, BCL2-geassosieerde
X proteien (BAX), kalium spanningsbeheerde kanaal, subfamilie J, lid 14 (KIR2.4), lin-7 homoloog
B (LIN-7b) en glikogeen sintase 1 (GYS1), is geselekteer vir mutasie-analise. Geen siekteveroorsakende
mutasie is egter gei'dentifiseer in die eksoniese of die naasliggende introniese
gebiede van hierdie gene nie.
Ter opsomming, hierdie studie het die PFHBI lokus verklein en het ‘n omvattende kaart van die
gebied gegenereer. Verskillende kandidaat gene is uitgesluit as die oorsaak van PFHBI, alhoewel
daar nog heelwat goeie kandidaat gene in hierdie geen-ryke lokus is wat geanaliseer behoort te
word. Die identifiseering van die PFHBI-veroorsakende mutasie sal ‘n platform bied vir verdere
studies om die patofisiologie van nie alleen PFHBI nie, maar ook meer algemene
geleidingstoomisse, te verstaan.
|
2 |
A candidate and novel gene search to identify the PFHBII-causative geneFernandez, Pedro (Pedro Wallace) 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: Heart failure due to cardiomyopathy or cardiac conduction disease is a major cause of
mortality and morbidity in both developed and developing countries. Although defined as
separate clinical entities, inherited forms of cardiomyopathies and cardiac conduction
disorders have been identified that present with overlapping clinical features and/or have
common molecular aetiologies.
The objective of the present study was to identify the molecular cause of progressive familial
heart block type II (PFHBII), an inherited cardiac conduction disorder that segregates in a
South African Caucasian Afrikaner family (Brink and Torrington, 1977). The availability of
family data tracing the segregation of PFHBII meant that linkage analysis could be employed
to identify the chromosomal location of the disease-causative gene. Human Genome Project
(HGP) databases have provided additional resources to facilitate the identification of
positional candidate genes.
Clinical examinations were performed on individuals of the PFHBII-affected family, and,
where available, clinical records of subjects examined in a previous study by Brink and
Torrington (1977) were re-assessed. Retrospective data suggested redefining the classification
of PFHBII. Subsequently, linkage analysis was used to test described dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM) and cardiac conduction-causative loci on
chromosomes 1, 2, 3, 6, 7, 9, 11, 14, 15 and 19 for their involvement in the development of
PFHBII. Once a locus was mapped, bioinformatics tools were applied to identify and
prioritise positional candidate genes for mutation screening.
The retrospective and prospective clinical study redefined PFHBII as a cardiac conduction
and DCM-associated disorder and simultaneously allowed more family members to be traced.Fortuitously, candidate loci linkage analysis mapped the PFHBII locus to chromosome 1q32,
to a region that overlapped a previously described DCM-associated disorder (CMD1D), by
the generation of a maximum pairwise lod score of 3.13 at D1S3753 (theta [θ]=0.0) and a
maximum multipoint lod score of 3.7 between D1S3753 and D1S414. However, genetic fine
mapping and haplotype analysis placed the PFHBII-causative locus distal to the CMD1D
locus, within a 3.9 centimorgan (cM) interval on chromosome 1q32.2-q32.3, telomeric of
D1S70 and centromeric of D1S505. Bioinformatics analyses prioritised seven candidate genes
for mutation analysis, namely, a gene encoding a potassium channel (KCNH1), an
extracellular matrix protein (LAMB3), a protein phosphatase (PPP2R5A), an adapter protein
that interacts with a cytoskeletal protein (T3JAM), a putative acyltransferase (KIAA0205) and
two genes encoding proteins possibly involved in energy homeostasis (RAMP and VWS59).
The PFHBII-causative mutation was not identified, although single sequence variations were
identified in four of the seven candidate genes that were screened.
Although the molecular aetiology was not established, the present study defined the
underlying involvement of DCM in the pathogenesis of PFHBII. The new clinical
classification of PFHBII has been published (Fernandez et al., 2004) and should lead to
tracing more affected individuals in South Africa or elsewhere. The identification of a novel
disease-causative locus may point toward the future identification of a new DCM-associated
aetiology, which, in turn, might provide insights towards understanding the associated
molecular pathophysiologies of heart failure. / AFRIKAANSE OPSOMMING: Hartversaking as gevolg van kardiomiopatie of kardiale geleidingsiekte is ‘n hoof-oorsaak
van mortaliteit and morbiditeit in beide ontwikkelde en ontwikkelende lande. Alhoewel
gedefinieer as verskillende kliniese entiteite is oorerflike vorms van kardiomiopatie en
kardiale geleidingsstoornisse geïdentifiseer met oorvleuelende kliniese eienskappe en/of
molukulêre oorsake.
Die doelwit van hierdie studie was om die molukulêre oorsaak van progressiewe familiële
hartblok tipe II (PFHBII), ‘n oorerflike kardiale geleidingsstoornis, wat in ‘n Suid-Afrikaanse
Kaukasiër familie segregeer (Brink en Torrington, 1977), te identifiseer. Die beskikbaarheid
van familie data, beteken dat koppelingsanalise gebruik kan word om die chromosomale
posisie van die siekte-veroorsakende geen te identifiseer. Menslike Genoom Projek (MGP)
databanke het addisionele hulpbronne beskikbaar gestel om die identifikasie van posisionele
kandidaat gene te vergemaklik.
Kliniese ondersoeke is uitgevoer op PFHBII-geaffekteerde familielede, en waar beskikbaar is
kliniese rekords van persone, wat in ‘n vorige studie deur Brink en Torrington (1977)
geassesseer was, herontleed. Retrospektiewe data-analise het die kliniese herdefinisie van
PFHBII voorgestel. Daarna is koppelingsanalise gebruik om dilateerde kardiomiopatie
(DKM), hipertrofiese kardiomiopatie (HKM) en kardiale geleidingssiekte-veroorsakende loki
op chromosoom 1, 2, 3, 6, 7, 9, 11, 14, 15 en 19 te ondersoek vir hul moontlike bydrae tot die
ontwikkeling van PFHBII. Toe die lokus gekarteer was, is bioinformatiese ondersoeke
gebruik om posisionele kandidaat gene te identifiseer en prioritiseer vir mutasie analise.
Die retrospektiewe en prospektiewe kliniese ondersoek het PFHBII herdefinieer as ‘n
geleidingsstoornis en DKM-verbonde siekte, en terselfde tyd het dit gelei tot die opsporingvan nog familielede. Toevallig het kandidaat loki-analise die PFHBII lokus op chromosoom
1q32 gekarteer, na ‘n gebied wat met ‘n voorheen-beskyfde DKM-verbonde stoornis
(CMD1D) oorvleuel, met die opwekking van ‘n makisimum paargewyse lod-getal van 3.13
by D1S3753 (theta [θ] = 0.0) en ‘n maksimum multipunt lod-getal van 3.7 tussen D1S3753 en
D1S414. Genetiese fynkartering en haplotipe-analise het die PFHBII-veroorsakende lokus
afwaards van die CMD1D lokus geplaas, in ‘n 3.9 centimorgan (cM) gebied op chromosoom
1q32.2-q32.3, telomeries van D1S70 en sentromeries van D1S505. Bioinformatiese analise
het daarnatoe gelei dat sewe kandidaat gene vir mutasie analise geprioritiseerd is, naamlik,
gene wat onderskeidelik ‘n kalium kanaal (KCNH1), ‘n ekstrasellulêre matriksproteïen
(LAMB3), ‘n proteïen fosfatase (PPP2R5A), ‘n aansluiter proteïen wat met ‘n sitoskilet
proteïen bind (T3JAM), ‘n asieltansferase (KIAA0205) en twee gene moontlik betrokke in
energie homeostase (RAMP en VWS59) enkodeer. Die PFHBII-veroorsakende geen is nie
geïdentifiseer nie, alhoewel enkele volgorde-wisselings geïdentifiseer is in vier van die sewe
geanaliseerde kandidaat gene.
Alhowel die molekulêre oorsaak van die siekte nie vasgestel is nie, het die huidige studie die
onderliggende betrokkenheid van DKM in die pathogenese van PFHBII gedefinieer. Die
nuwe kliniese klassifikasie van PFHBII is gepubiliseer (Fernandez et al., 2004) en sal lei tot
die identifisering van nog geaffekteerde persone in Suid Afrika of in ander lande. Die
identifikasie van ‘n nuwe siekte-verbonde lokus mag lei tot die toekomstige identifikasie van
‘n nuwe DKM-verbonde genetiese oorsaak wat, opsig self, dalk insig kan gee in die
molekulêre patofisiologie van hartversaking.
|
Page generated in 0.1038 seconds