Spelling suggestions: "subject:"cardiac repair"" "subject:"ardiac repair""
1 |
Paracrine Engineering of Human Cardiac Stem Cells with Insulin-Like Growth Factor 1 Promotes Cell Survival to Enhance Myocardial RepairJackson, Robyn January 2014 (has links)
Insulin-like growth factor (IGF-1) is a potent pro-survival cytokine that is not robustly expressed by human cardiac stem cells (CSCs). Here, we explore the mechanism underlying IGF-1 enhanced cardiac repair by CSCs. Human CSCs underwent lentiviral- mediated somatic gene transfer of IGF-1 to boost cytokine secretion without adversely blunting the overall cytokine signature of CSCs. In vitro studies demonstrated that IGF-1 provided paracrine and autocrine support that reduced apoptosis by CSCs and cardiomyoctes. In vivo experiments demonstrated that IGF-1 increased CSC-mediated cardiac repair by enhancing salvage of reversibly damaged myocardium and transplanted cell survival.
|
2 |
Cell-Taught Gene Therapy for the Preservation and Regeneration of Cardiac Tissue Following Chronic Heart FailureSundararaman, Srividya 05 January 2011 (has links)
No description available.
|
3 |
Encapsulation of Explant-Derived Cardiac Stem Cells in Agarose Nanoporous Gel Cocoons to Enhance Cardiac RepairKanda, Pushpinder 27 March 2019 (has links)
Micro-encapsulation of heart explant-derived stem cells (EDCs) within protective nanoporous gel (NPG) cocoons improves cardiac function and long-term retention of transplanted cells after ischemic injury by limiting detachment induced cell death and vascular clearance of intramyocardial injected cells. Although cocooned EDCs boost cardiac function, the fundamental mechanism is unclear. Here, we investigate the effects of altering cocoon stiffness and size on human EDC mediated repair of damaged myocardium using an immunodeficient mouse model of ischemic cardiomyopathy. First, we found that increasing cocoon stiffness by altering NPG content boosted cell viability and migration; effectively forcing cocooned cells to adopt a migratory, invasive phenotype. Although cocooning improved retention of transplanted cells, increasing cocoon stiffness had no additional effects on long-term engraftment despite markedly improving cardiac function and fibrosis after myocardial infarction. Given increased cocoon stiffness boosted the production and microRNA cargo within EDC nanovesicles, the observed benefits in post-ischemic function are likely dependent more on paracrine production of transplanted cells rather than simply increasing the number of cells retained. The effect of cocoon diameter on EDC phenotype and cell mediated repair of ischemic myocardium was evaluated using microfluidic-based cocooning enabling deterministic encapsulation within defined cocoon size and intracapsular cell number while maintaining a fixed cocoon stiffness. Increased cocoon size enhanced post-ischemic cardiac function by reducing clearance of transplanted cells and increased paracrine stimulation of endogenous repair. The latter being attributable to microfluidic cocooning closely following the expected Poisson distribution with smaller cocoons having a greater proportion of single cells while larger cocoons contained greater proportions of multicellular aggregates which enhanced cell-cell interactions to increase the amount and breadth of cytokines/nanoparticles delivered to injured myocardium. In conclusion, altering the biophysical properties of NPG surrounding cocooned cells provides a straightforward means of boosting the regenerative potential of heart EDCs for repair of injured myocardium.
|
4 |
The role of human embryonic stem cell-derived epicardium in myocardial graft developmentBargehr, Johannes January 2018 (has links)
No description available.
|
5 |
Rôles des gènes PPARβ/δ, Wt1, Cyp51 et Dnmt2 dans l'angiogenèse et la fonction cardiaque chez la souris adulte saine et dans un modèle d'infarctus du myocarde / Role of PPARβ/δ, Wt1, Cyp51 and Dnmt2 in angiogenesis and cardiac function in healthy adult mice and after myocardial infarctionBaudouy, Delphine 15 December 2016 (has links)
La coronaropathie est une cause majeure de mortalité, motivant la recherche de stratégies limitant le remodelage cardiaque ou stimulant la néovascularisation après un infarctus du myocarde (IDM). Ce travail vise à étudier chez la souris adulte le rôle, sur la fonction cardiaque, de gènes régulant l'angiogenèse et le métabolisme cellulaire en modulant leur expression endothéliale en conditions basales ou en post-IDM (après ligature coronaire) : PPARβ/δ, Wt1, Cyp51 et Dnmt2. Les paramètres échocardiographiques ont été mesurés pré et post-IDM, des analyses histochimiques réalisées, et l’expression de gènes cibles comparée selon le génotype. La surexpression de PPARβ/δ stimule l'angiogenèse basale, causant une hypertrophie ventriculaire gauche (VG). En post-IDM, elle induit un remodelage VG pathologique et majore la taille de l'IDM, posant la question des interactions entre endothélium et cardiomyocytes. En post-IDM, l'invalidation de Wt1 limite l'angiogenèse coronaire, majore le remodelage VG et la taille de l'IDM. A l'état basal, l'invalidation de Cyp51 est à l'origine d'une insuffisance cardiaque dilatée, via une perméabilité vasculaire accrue et une activation endothéliale. La modification de la composition membranaire en stérols peut expliquer la dysfonction de l'endothélium, modifiant ses interactions avec les cardiomyocytes. Ainsi, Cyp51 possède un rôle essentiel dans la structure et la fonction cardiaque, ouvrant le champ de son étude en post-IDM. Enfin, l'expression de Dnmt2 est indispensable pour limiter l'hypertrophie cardiaque, via le contrôle de l'activité de l'ARN polymérase II par la méthylation de l’ARN non codant Rn7sk. / Coronary heart disease is a major cause of mortality, explaining the increasing interest in therapeutics targeting cardiac remodeling and neovascularization after myocardial infarction (MI). Using endothelial expression modulation in adult mice in basal or post-MI conditions (after coronary artery ligation), this work studied several genes involved in angiogenesis and cardiac metabolism, PPARβ/δ, Wt1, Cyp51 and Dnmt2, and their role in cardiac function. Echocardiographic structural and functional parameters were measured before and after MI, histochemistry analyses performed, and target genes expression compared between different genotypes. PPARβ/δ basal overexpression resulted in an increased angiogenesis and cardiac hypertrophy. After MI, it caused MI expansion through increased cardiac remodelling. This discrepancy raises the issue of communication between endothelial cells and cardiomyocytes. Endothelial Wt1 expression is essential for cardiac repair after MI : deletion was responsible for neovascularization impairment, poorer cardiac remodeling and MI enlargement. Endothelial Cyp51 expression is necessary for basal cardiac structure and function. After Cyp51 deletion, membrane and cell junction disorganization caused increased vascular permeability and endothelium activation, resulting in dilated cardiomyopathy. The accumulation of toxic oxysterols or lack of cholesterol might account for endothelial dysfunction, through abnormal endothelial cells to cardiomyocytes signalling. Dnmt2 deletion caused cardiac hypertrophy. through methylation of non-coding RNA Rn7sk and control of RNA polymerase II activity.
|
6 |
Cardiac Repair Using A Decellularized Xenogeneic Extracellular MatrixShah, Mickey January 2018 (has links)
No description available.
|
Page generated in 0.0554 seconds