• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 164
  • 29
  • 26
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 463
  • 75
  • 50
  • 36
  • 36
  • 35
  • 33
  • 32
  • 30
  • 29
  • 29
  • 29
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Effects of Season, Size and Parasitism by the Acanthocephalan, Profilicollis altmani, on the Carotenoid Concentration and Composition of the Pacific Mole Crab, Emerita analoga

Constancio, Lauren F 01 March 2011 (has links) (PDF)
The Pacific Mole crab Emerita analoga is a filter-feeding crustacean inhabiting sandy beaches along the western coasts of North and South America. The tissues of E. analoga contain carotenoids, dietary pigments that are involved in crustacean cryptic coloration and egg development. Despite extensive study of its life history, little is known about how E. analoga is affected by parasitism, even though previous groups noted the presence of larval helminths in its body cavity. We examined parasite prevalence and intensity of the acanthocephalan Profilicollis altmani infecting E. analoga from Pismo Beach, California. We investiged the effects of parasite infection and body size on egg production as well as the effects of parasite infection, body size, season and reproductive condition on tissue carotenoids. We also analyzed P. altmani cystacanths for carotenoids to determine if parasite acquisition of host carotenoids was possible. Infection by P. altmani did not affect the carotenoid concentration or content of any E. analoga tissues. Egg mass production was also unaffected by infection. Crab body size was the only significant predictor of carapace and egg carotenoid concentration, while reproductive season significantly affected ovarian carotenoid concentration. P. altmani cystacanths contained carotenoids similar to those found in E. analoga tissues, but we could not determine if acquisition was purposeful or from a specific tissue. E. analoga esophagus tissue was analyzed for the first time during this study and contained predominantly astaxanthin.
92

Raman spectroscopic and structural investigation of 1,4-diphenylbuta-1,3-diene and selected monomethyl and dimethyl substituted homologues

Bowen, Richard D., Edwards, Howell G.M., Waller, Zoe A.E. January 2006 (has links)
No / The Raman and mass spectra of 1,4-diphenylbuta-1,3-diene and several of its monomethyl and dimethyl homologues are reported and discussed, with a view to developing a spectroscopic protocol for detecting the presence and position of a methyl group in these compounds. Raman spectroscopy and mass spectrometry are shown to provide complementary information, by which the four available monomethyl homologues may be readily distinguished from each other and 1,4-diphenylbuta-1,3-diene itself. The utility of these 1,4-diarylbutadienes as model compounds for carotenoids and related materials, which may serve as indicators of extinct or extant extraterrestrial life, is considered.
93

The influence of overwatering, underwatering, and waterlogging on the growth of kale (Brassica oleracea var. acephala)

Brazel, Skyler R. 12 May 2023 (has links) (PDF)
The Intergovernmental Panel on Climate Change has predicted that there will be increases in precipitation and heat-induced drought events globally. Information on kale response to waterlogging is minimal. The purpose of this project was to identify the response of kale to three treatments of water stress: underwatering, overwatering, and waterlogging. Plant pigments analyzed displayed a varied response to underwatering and overwatering, with concentrations changing with maturity but with reductions and no changes, respectively, at full harvest maturity. Glucosinolate concentrations were also influenced by maturity and increased under waterlogging and underwatering but no differences with overwatering. Overall, water stress to any degree is not ideal for kale during production, but despite yield reductions, underwatering led to increases among phytonutrients, but increases are apparent and do not equate to increased absorption when consumed.
94

Mechanisms Controlling Vitamin A Homeostasis in the Gut and Periphery

Kelly, Mary E., Kelly 31 August 2018 (has links)
No description available.
95

Mammalian Carotenoid Metabolism

Palczewski, Grzegorz 01 September 2016 (has links)
No description available.
96

PRE-ABSORPTIVE METABOLISM OF CAROTENOIDS

Thakkar, Sagar 08 September 2009 (has links)
No description available.
97

The composition of crayfish carotenoids and the fatty acid composition of crayfish lipids including carotenoid esters /

Wolfe, Douglas A. January 1964 (has links)
No description available.
98

Elucidating Influence of Temperature and Environmental Stress on Turfgrass Response to Mesotrione and Evaluation of Potential Synergistic Admixtures to Improve Mesotrione Efficacy

Ricker, Daniel 06 January 2009 (has links)
Mesotrione is under evaluation for registration in turfgrass for weed control, but often requires repeat treatments. Previous research in agricultural crops indicates tank mixtures with mesotrione may improve weed control. Three field trials were conducted in 2005 and 2006 in Blacksburg, VA on smooth crabgrass in perennial ryegrass and tall fescue. Data indicate mesotrione applied in combination with bentazon, bromoxynil, or carfentrazone, controlled smooth crabgrass better than any of these herbicides applied alone at all sites. Adding mesotrione to MSMA and quinclorac improved smooth crabgrass on of three sites. Sequential mesotrione applications improved long term weed control. / Master of Science
99

Effect of Amino Acids on Growth and Cartenogenesis in Corynebacterium Species Strain 7E1C

Coughran, Carolyn S. 05 1900 (has links)
Studies were evaluated on the effects of known growth factors on the growth and carotenogenesis of Corynebacterium species strain 7ElC. The complex medium, Tryptic Soy Broth,was found to stimulate growth and production of more pigment in the light and in the dark than did a mineral salts-glucose medium. A complete amino acid mixture added to LSG enhanced carotenogenesis in the dark in Corynebacterium 7ElC, while B-vitamins retarded carotenogenesis. No absolute requirement for one or more amino acids was found,indicating a multiple amino acid requirement. The fewest amino acids found to stimulate carotenogenesis in the dark were a combination of those in the Serine and Histidine families which include serine, glycine, cysteine, and histidine.
100

THE EFFECT OF INCORPORATING NUTRIENT-DENSE NATIVE AFRICAN PLANT MATERIALS ON THE BIOACCESSIBILITY OF PROVITAMIN A CAROTENOIDS FROM COMPOSITE CEREAL-BASED FOOD PRODUCTS

Hawi A. Debelo (5929628) 16 January 2019 (has links)
<p></p><p></p><p><br></p><p></p><p>Vitamin A deficiency is the leading cause of childhood blindness affecting over 190 million preschool children around the world where the highest rates are found in Sub-Saharan Africa (1). The coexistence of this deficiency with shortfalls in iron and zinc has resulted in a shift in intervention strategies from single targeted approach to broader diet diversification. As a result, food-based strategies leveraging local nutrient-dense plants as natural fortificants have gained significant interest for their potential to simultaneously address multiple micronutrient, and in some instances macronutrient, deficiencies. However, the efficacy of such approach depends upon several factors including knowledge on the nutritional composition of native plant materials as well as strategies for their incorporation into staple consumer products. Additionally, there is lack of information on impact of concurrent introduction of mineral and provitamin A rich plants on the stability and bioavailability of each individual nutrients including changes in these factors over extended periods of exposure. This is a key point considering that many of these materials are reported to have potential inhibitors of carotenoid absorption (minerals, fiber and phenolics).</p><p></p><p>To address these research gaps, this dissertation focuses on three areas including 1) micronutrient, phytochemical and polysaccharide characterization of three commercially available native micronutrient dense African plant materials [Adansonia digitata (baobab), Moringa Oleifera (moringa) and Hibiscus Sabdariffa (hibiscus)] that have been targeted for use as natural iron fortificants; 2) determination of the impact of these materials on the bioaccessibility and intestinal uptake of provitamin A carotenoids from model composite cereal products and 3) assess the effect of longer term exposure to baobab and moringa on provitamin A carotenoid absorption and cellular differentiation biomarkers of human intestinal Caco-2 cells to better understand the potential impacts of extended exposure periods on long term micronutrient uptake. </p><p><br></p><p>Characterization of the plant fortificants focused on understanding both nutritive components and potential limiters of carotenoid bioavailability. Baobab, moringa and hibiscus all were found to contain key phytochemical and polysaccharide components that could be leveraged as nutritional and function ingredients. The relatively higher levels of lutein (57  4.6 g/g), zeaxanthin (11  0.1g/g) and -carotene (20  2 g/g) in moringa leaf powder support the notion that this plant material can be used as a source of provitamin A and non-provitamin A carotenoids. Phenolic analysis revealed the presence of substantial amounts of flavan-3-ols (1234  16 mg/100g) in baobab, anthocyanins (2001  56 mg/100g) in hibiscus, and flavonols (5352  139 mg/100g) in moringa leaf powder. Polysaccharide analysis demonstrated that the primary monosaccharide in baobab was found to be xyloglucan (47 %) which is in agreement with the tentative identification Xyloglucans (hemicellulosic polysaccharide) based on linkage analysis. Hibiscus was found to contain similar amounts of xylose (20%) and galactose (27%) supporting the presence of similar proportions of xyloglucans and pectic polysaccharides (type I, type II AG, RG I). The main monosaccharide in moringa was found to be galactose (36%) followed by glucose (23%) and linkage analysis revealed the presence of high proportions of pectic polysaccharides (type I, type II AG, RG I). These results provide insight into presence of potential enhancer or inhibitors of target micronutrient (provitamin A carotenoids or iron/zinc) bioavailability when used as functional and nutritional food ingredients.</p><p><br></p><p>Subsequently, the impact of mineral-rich baobab formulated at levels relevant for iron fortification on the bioaccessibility of provitamin A carotenoids (proVAC) from composite millet porridges containing dried carrot and mango was assessed using in vitro digestion. Proportions of millet flour and plant materials were dry blended to deliver ~25% of the RDA for vitamin A(VA) and iron(Fe) as follows: decorticated extruded millet (Senegalese Souna var.) (40-60%), dried proVA rich carrot and mango blend (30%), and dried Fe and ascorbic acid rich Adansonia digitata (baobab) (0-25%). While there were no significant differences in proVAC bioaccessibility from porridge formulations with 5 and 15% baobab (18.8+/-2.0 and 18.8±2.0% respectively) as compared to control containing no mineral-rich plant (23.8 +/- 1.2%), 25% baobab resulted in a significant decrease (p<0.05) in bioaccessibility of proVAC (13.3+/-1.6%). However, baobab inclusion did not impact intestinal uptake efficiency of provitamin A carotenoids by Caco-2 human intestinal cells</p><p><br></p><p>(3.3-3.6% -carotene and 3.7-4.5% for -carotene) across all formulation. These results suggest that any potential negative effects of baobab inclusion may be limited to food matrix interactions and digestion. This was confirmed in separate experiments that with experiments on baobab and carotenoid blends showing that digested baobab did not affect carotenoid absorption by Caco-2 cells. Overall these data support the notion that that modest inhibition of carotenoid bioaccessibility by baobab may not significantly limit carotenoid delivery from composite porridges. Furthermore, bioaccessible provitamin A content of a serving (200 g) of composite porridges can provide 27 - 48% of the RDA of vitamin A for children 1-3 years of age. </p><p><br></p><p>Finally, we evaluated the impact of long-term exposure to baobab and moringa digesta on Caco-2 cell differentiation biomarkers and provitamin A uptake to gain insight into how inclusion of these materials in to a daily diet may alter absorption and transport of nutrients or otherwise have potential negative effects on the intestine. Based on NMR analysis of intracellular metabolites in differentiating Caco-2 monolayers, significant alterations in specific osmotic pressure regulators, particularly glycerophosphocholine, taurine and myo-inositol were observed with repeated exposure to all treatment groups including the control (digested 0.9% saline solution). Changes in these metabolites levels have been linked with specific cellular function including protection against hyperosmotic stress and regulation of paracellular permeability of Caco-2 cells. Evaluation of carotenoid uptake comparing acute and acute on repeated exposure to treatment groups demonstrated that there was an overall significant reduction in carotenoid uptake with repeated exposure across all treatment groups including the control. Despite the reduction in carotenoid uptake, mRNA and protein levels of carotenoid transporters (CD-36, SR-B1 and FABP1) were not significantly altered with exposure through differentiation (except for SR-B1 protein levels). Decrease in SR-B1 levels may be due to bile acid accumulation from the digesta matrix which is known to regulate its own biosynthesis by a mechanism that involves the down-regulation SR-B1 expression to protect cells from cytotoxicity. Our results provide some insight into the impact of simulated gastrointestinal fluids alone on provitamin A uptake in this model system which are usually not taken into consideration in most Caco-2 cell studies. However, overall, these findings indicate that the introduction of baobab and moringa at levels relevant for delivery of meaningful levels of iron (15-23% RDA) should not have negative impacts on human intestinal function or carotenoid uptake over chronic use. </p><p>Taken together, our findings indicate that the three native Africa plant materials selected for investigation in these studies can be important sources of key micronutrients (iron, zinc and provitamin A carotenoids) and have potential as natural fortificants with application in staple foods such as cereal porridges. Incorporation of these plant materials, do not appear to negatively affect carotenoid bioavailability although there is a potential for their interaction during micellarization of carotenoids during normal digestion. While in vivo studies evaluating the bioavailability of provitamin A carotenoids from such composite formulations are required, these data support the further exploration of such natural fortification strategies in addressing micronutrient deficiencies in local African communities. </p><div><br></div><p><br></p>

Page generated in 0.0539 seconds