• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation and function of renin-angiotensin system in the carotid body.

January 2002 (has links)
Siu-Yin Sylvia Lam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 123-140). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iv / 英中譯名對照 --- p.vi / Acknowledgements --- p.vii / Table of Contents --- p.viii / Abbreviations --- p.xiii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Overview of Carotid Body --- p.1 / Chapter 1.1.1 --- Type I Cells --- p.3 / Chapter 1.1.2 --- Type II Cells --- p.4 / Chapter 1.1.3 --- Blood Vessels --- p.5 / Chapter 1.1.4 --- Innervation --- p.5 / Chapter 1.1.5 --- Biochemistry --- p.6 / Chapter 1.1.6 --- Physiology and Function --- p.7 / Chapter 1.2 --- The Renin-Angiotensin System (RAS) --- p.8 / Chapter 1.2.1 --- Circulating RAS --- p.8 / Chapter 1.2.1.1 --- Angiotensinogen --- p.10 / Chapter 1.2.1.2 --- Renin --- p.10 / Chapter 1.2.1.3 --- Angiotensin I --- p.11 / Chapter 1.2.1.4 --- Angiotensin Converting Enzyme --- p.12 / Chapter 1.2.1.5 --- Angiotensin II --- p.12 / Chapter 1.2.1.6 --- Angiotensin II Receptors --- p.13 / Chapter 1.2.1.7 --- Angiotensin IV and Angiotensin IV Receptor --- p.15 / Chapter 1.2.2 --- Tissue RAS --- p.16 / Chapter 1.3 --- Hypoxia and Carotid Body --- p.18 / Chapter 1.4 --- Hypoxia and RAS --- p.21 / Chapter 1.5 --- Hypoxia and RAS in Carotid Body --- p.23 / Chapter 1.6 --- Aims of Study --- p.24 / Chapter 1.6.1 --- Existence of Functional Angiotensin II Receptors --- p.24 / Chapter 1.6.2 --- Regulation and Function of Angiotensin II Receptors by Chronic Hypoxia --- p.24 / Chapter 1.6.3 --- Existence of an Intrinsic Angiotensin-generating System --- p.25 / Chapter 1.6.4 --- Regulation of Local RAS by Chronic Hypoxia --- p.25 / Chapter 1.6.5 --- Studies of AT4 Receptor --- p.26 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Experimental Animals and Rat Models --- p.27 / Chapter 2.1.1 --- Rat Model of Chronic Hypoxia --- p.27 / Chapter 2.1.2 --- Isolation of Carotid Body --- p.28 / Chapter 2.2 --- Semi-quantitative Reverse Transcriptase-polymerase Chain Reaction (RT-PCR) --- p.30 / Chapter 2.2.1 --- Total RNA Extraction and Quantification --- p.30 / Chapter 2.2.2 --- Reverse Transcription (RT) --- p.31 / Chapter 2.2.3 --- Polymerase Chain Reaction (PCR) --- p.31 / Chapter 2.2.4 --- Gel Electrophoresis --- p.34 / Chapter 2.2.5 --- Optimization of Semi-quantitative RT-PCR for RAS Gene Analysis --- p.34 / Chapter 2.3 --- Northern Blotting --- p.35 / Chapter 2.3.1 --- Transfer of Denatured RNA to Nitrocellulose Membrane By Capillary Elution --- p.35 / Chapter 2.3.2 --- Hybridization --- p.36 / Chapter 2.4 --- In-situ Hybridization --- p.38 / Chapter 2.4.1 --- Linearization of Angiotensinogen cDNA --- p.38 / Chapter 2.4.2 --- Riboprobe Preparation --- p.38 / Chapter 2.4.3 --- Quantification and Gel Electrophoresis of Riboprobes --- p.39 / Chapter 2.4.4 --- In-situ Hybridization Histochemistry --- p.39 / Chapter 2.5 --- Immunohistochemistry --- p.42 / Chapter 2.5.1 --- Preparation of Cryosection --- p.42 / Chapter 2.5.2 --- Indirect Immunoperoxidase Staining --- p.42 / Chapter 2.5.3 --- Immunofluorescent Double Staining --- p.43 / Chapter 2.6 --- Western Blot Analysis --- p.45 / Chapter 2.6.1 --- Preparation of Angiotensinogen Protein --- p.45 / Chapter 2.6.2 --- Quantification of Protein Concentration --- p.45 / Chapter 2.6.3 --- Sample Preparation --- p.45 / Chapter 2.6.4 --- Sodium Dodecyl-sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.46 / Chapter 2.6.5 --- Electroblotting and Immunodetection of Proteins --- p.46 / Chapter 2.7 --- Spectrofluorimetric Measurement and In-vitro Electrophysiology --- p.48 / Chapter 2.7.1 --- Dissociation of Carotid Body Type I Cells and Spectrofluorimetric Measurement --- p.48 / Chapter 2.7.2 --- In-vitro Electrophysiology --- p.49 / Chapter 2.8 --- Assay of ACE Activity --- p.51 / Chapter 2.8.1 --- Crude Membrane Preparation --- p.51 / Chapter 2.8.2 --- Basic Principle for ACE Activity Measurement --- p.51 / Chapter 2.8.3 --- Measurement of ACE Activity --- p.51 / Chapter 2.8.4 --- Fluorescence Measurement --- p.53 / Chapter 2.9 --- In-vitro Autoradiography and Fluorescence-labeled Binding Assay for Angiotensin IV --- p.54 / Chapter 2.9.1 --- Preparation of Frozen Tissue Sections --- p.54 / Chapter 2.9.2 --- Localization and Density of AT4 Receptor --- p.54 / Chapter 2.10 --- Statistics and Data Analysis --- p.57 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Functional Expression of Angiotensin II Receptors --- p.58 / Chapter 3.1.1 --- [Ca2+]i Response to Angiotensin II --- p.58 / Chapter 3.1.2 --- Antagonistic Blockade of Angiotensin II Receptor Subtypes --- p.58 / Chapter 3.1.3 --- Expression of AT1 Receptors mRNA --- p.61 / Chapter 3.1.4 --- Cellular Localization of AT1 Receptors Protein --- p.61 / Chapter 3.2 --- Effect of Chronic Hypoxia on the Expression and Function of Angiotensin II Receptors --- p.64 / Chapter 3.2.1 --- Effect of Chronic Hypoxia on the Expression of AT1 Receptors --- p.64 / Chapter 3.2.2 --- Effect of Chronic Hypoxia on the Expression of AT2 Receptors --- p.67 / Chapter 3.2.3 --- Cellular Localization of the AT1 Receptor by Chronic Hypoxia --- p.69 / Chapter 3.2.4 --- Increase of Afferent Nerve Activities of the Carotid Body In-vitro by Angiotensin II --- p.71 / Chapter 3.2.5 --- Inhibition of Angiotensin II-mediated Response in Chronically Hypoxic Carotid Body by Losartan --- p.73 / Chapter 3.3 --- Evidence for the Existence of an Intrinsic Angiotensin-generating System --- p.75 / Chapter 3.3.1 --- Expression and Localization of Angiotensinogen mRNA --- p.75 / Chapter 3.3.2 --- Expression and Localization of Angiotensinogen Protein --- p.78 / Chapter 3.3.3 --- Expression of Renin mRNA --- p.81 / Chapter 3.3.4 --- Expression of ACE mRNA --- p.81 / Chapter 3.4 --- Effect of Chronic Hypoxia on the Locally-generated Angiotensin System --- p.85 / Chapter 3.4.1 --- Effect of Chronic Hypoxia on the Expression of Angiotensinogen mRNA --- p.85 / Chapter 3.4.2 --- Effect of Chronic Hypoxia on the Localization of Angiotensinogen mRNA --- p.87 / Chapter 3.4.3 --- Effect of Chronic Hypoxia on the Expression of Angiotensinogen Protein --- p.89 / Chapter 3.4.4 --- Effect of Chronic Hypoxia on the Expression of ACE --- p.91 / Chapter 3.5 --- Time-course Effect of Chronic Hypoxia on ACE Activity --- p.93 / Chapter 3.6 --- Preliminary Studies of AT4 Receptor --- p.98 / Chapter 3.6.1 --- In-vitro Autoradiographic Study of AT4 Receptors --- p.98 / Chapter 3.6.2 --- Localization of AT4 Receptors --- p.100 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Functional Expression of Angiotensin II Receptors --- p.102 / Chapter 4.2 --- Upregulation and Function of Angiotensin II Receptors --- p.105 / Chapter 4.3 --- Existence of a Local RAS --- p.108 / Chapter 4.4 --- Regulation of the Local RAS --- p.112 / Chapter 4.5 --- Time-dependent Changes of ACE Activity --- p.155 / Chapter 4.6 --- Presence and Regulation of AT4 Receptor --- p.117 / Chapter 4.7 --- Conclusion --- p.120 / Chapter 4.8 --- Future Works --- p.121 / Chapter Chapter 5 --- References --- p.123

Page generated in 0.0602 seconds