• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electron dynamics in nanomaterials for photovoltaic applications by time-resolved two-photon photoemission

Tritsch, John Russell 23 October 2013 (has links)
The impetus of unsustainable consumption coupled with major environmental concerns has renewed our society's investment in new energy production methods. Solar energy is the poster child of clean, renewable energy. Its favorable environmental attributes have greatly enhanced demand resulting in a spur of development and innovation. Photovoltaics, which convert light directly into usable electrical energy, have the potential to transform future energy production. The benefit of direct conversion is nearly maintenance free operation enabling deployment directly within urban centers. The greatest challenge for photovoltaics is competing economically with current energy production methods. Lowering the cost of photovoltaics, specifically through increasing the conversion efficiency of the active absorbing layer, may enable the invisible hand to bypass bureaucracy. To accomplish the ultimate goal of increased efficiency and lowered cost, it is essential to develop new material systems that provide enhanced output or lowered cost with respect to current technologies. However, new materials require new understanding of the physical principles governing device operation. It is my hope that elucidating the dynamics and charge transfer mechanisms in novel photovoltaic material systems will lead to enhanced design principles and improved material selection. Presented is the investigation of electron dynamics in two materials systems that show great promise as active absorbers for photovoltaic applications: inorganic semiconductor quantum dots and organic semiconductors. Common to both materials is the strong Coulomb interaction due to quantum confinement in the former and the low dielectric constant in the latter. The perceived enhancement in Coulomb interaction in quantum dots is believed to result in efficient multiexciton generation (MEG), while discretization of electronic states is proposed to slow hot carrier cooling. Time-resolved two-photon photoemission (TR2PPE) is utilized to directly map out the hot electron cooling and multiplication dynamics in PbSe quantum dots. Hot electron cooling is found to proceed on ultrafast time scales (< 2ps) and carrier multiplication proceeds through an inefficient bulk-like interband scattering. In organic semiconductors, the strong Coulomb interaction leads to bound electron-hole pairs called excitons. TR2PPE is used to monitor the separation of excitons at the model CuPc/C₆₀ interface. Exciton dissociation is determined to proceed through "hot" charge transfer states that set a fundamental time limit on charge separation. TR2PPE is used to investigate charge and energy transfer from organic semiconductors undergoing singlet fission, an analog of multiple exciton generation. The dynamic competition between one and two-electron transfer is determined for the tetracene/C₆₀ and tetracene/CuPc interfaces. These findings allow for the formulation of design principles for the successful harvesting of hot or multiple carriers for solar energy conversion. / text
2

Photo-physics and applications of colloidal quantum dots

Stubbs, Stuart Kenneth January 2010 (has links)
The work presented in this thesis was submitted to The University of Manchester for the degree of Doctor of Philosophy in June 2010 by Stuart K Stubbs and is entitled “Photo-physics and applications of colloidal quantum dots”. In this thesis the results of spectroscopic studies on various colloidal quantum dots, particularly related to the measurement and characterisation of multiple exciton generation are presented. Research conducted with Nanoco Technologies Ltd. that involved the design and development of hybrid quantum dot organic light emitting diodes for use in flat panel display technology is also presented. Cadmium selenide (CdSe), indium phosphide (InP), and lead sulphide (PbS) type I and cadmium selenide/cadmium telluride type II colloidal quantum dots were characterised using steady state photoluminescence and absorption spectroscopy. The fluorescence lifetimes of the decay of single excitons was measured in these quantum dots using time correlated single photon counting. An ultrafast transient absorption spectrometer was designed, built, and used to observe the picosecond dynamics of the decay of multiexcitons. These absorption transients were analysed in order to extract the quantum efficiency of producing multiple excitons per absorbed photon. The characteristic signature for multiple exciton generation was first found in CdSe using a time correlated single photon counting set-up. Results from the transient absorption spectrometer demonstrated efficient multiple exciton generation in InP for the first time as well as in PbS, where the efficiency was found to agree with values obtained by other research groups. The absorption transients taken for the type II CdSe/CdTe type II quantum dots demonstrated some novel decay dynamics that could not be attributed to the generation of multiple excitons. Quantum dot organic light emitting diodes were fabricated using Nanoco Technologies high quality cadmium based quantum dots and were shown to demonstrate bright, colour saturated emission originating from the quantum dot layer only. Using quantum dots of different sizes and structures red, green and blue devices were made and shown to be appropriate both in terms of brightness and chromaticity for the use as the red, green and blue pixels of a flat panel display. Because heavy metals like cadmium are restricted or banned from commercial products in many countries, Nanoco Technologies heavy metal free quantum dots, made from InP, were also incorporated in devices. Devices are demonstrated that emit from the quantum dot layer only, albeit at a lower luminance and efficiency than that found in the cadmium containing devices. This was the first demonstration of a heavy metal free, hybrid quantum dot organic light emitting diode.
3

Inspection of Excited State Properties in Defected Carbon Nanotubes from Multiple Exciton Generation to Defect-Defect Interactions

Weight, Braden Michael January 2020 (has links)
Covalent SP3-hybridization defects in single-walled carbon nanotubes (CNTs) have been prevalent in recent experimental and theoretical studies for their interesting photophysical properties. These systems are able to act as excellent sources of single, infrared photons, even at room temperature, making them marketable for applications to sensing, telecommunications, and quantum information. This work was motivated by recent experimental studies on controllable defect placement and concentration as well as investigating carrier multiplication (CM) using DFT-based many-body perturbation theory (MBPT) methods to describe excitonic relaxation processes. We find that pristine CNTs do not yield appreciable MEG at the minimum threshold of twice the optical gap 2Eg, but covalent functionalization allows for improved MEG at the threshold. Finally, we see that defect-defect interactions within CNT systems can be modeled simply as HJ-aggregates in an effective Hamiltonian model, which is shown to be valid for certain, highly-redshifted defect configurations at low defect-defect separation lengths.
4

Nanostructured silicon-based metamaterial and its process of fabrication for applications in optoelectronics and energy / Métamatériau au silicium nanostructuré et son procédé de fabrication pour des applications énergétiques et optoélectroniques

Hosatte, Mikaël 26 September 2014 (has links)
Des nanostructures basées sur des différences de cristallinité ont été insérées dans des cellules test en silicium par des techniques d’amorphisation innovantes. Un nouveau mécanisme de multiplication de porteurs a ainsi été observé. Cet effet peut provenir des niveaux d’énergie électronique introduits par de grandes densités locales de bi-lacunes. Un principe de fonctionnement impliquant des mécanismes à niveaux d’énergie multiples et un transport électronique rapide au sein de la bande d’énergie des atomes de phosphore non-ionisés a également été proposé. Cela conduit à une asymétrie favorable entre la génération et la recombinaison des porteurs libres.L’énergie nécessaire à un photon pour enclencher le procédé s’est révélée plus petite que deux fois celle de la bande interdite. L’amélioration du rendement photovoltaïque devient donc concevable et une nouvelle génération de cellules solaires à haute efficacité pourrait ainsi émerger de cet effet de multiplication à faible-énergie. / Nanostructures based on differences of crystallinity have been embedded into all-silicon test devices by innovative amorphization techniques and a new carrier multiplication mechanism was observed. This effect can indeed originate from the electron energy levels resulting from the high densities of divacancies localized at the crystalline/amorphous interfaces.An operating principle involving multiple energy level mechanisms and fast electronic transport within the unionized phosphorus energy band was also advanced. It led to a favourable asymmetry between generation and recombination of free carriers.Besides, contrary to other carrier multiplication effects, photon energy lower than twice the band gap was found sufficient to initiate the process. The enhancement of photovoltaic yields becomes therefore conceivable and propositions of prototypes are made. A new generation of high efficiency solar cells may then emerge from this Low-Energy Electron Multiplication effect.
5

Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells

Poppe, J., Hickey, Stephen G., Eychmüller, A. January 2014 (has links)
No / The objective of this review is to provide an overview concerning what the authors believe to be the most important photoelectrochemical techniques for the study of semiconductor nanoparticles. After a short historical background and a brief introduction to the area of photoelectrochemistry, the working principles and experimental setups of the various static and dynamic techniques are presented. Experimental details which are of crucial importance for their correct execution are emphasized, and applications of the techniques as found in the recent research literature as applied to semiconductor nanoparticles are illustrated.

Page generated in 0.2661 seconds