• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Analytical Tool for Calculating Co-Channel Interference in Satellite Links That Utilize Frequency Reuse

Chhabra, Saurbh 06 November 2006 (has links)
This thesis presents the results of the development of a user-friendly computer code (in MATLAB) that can be used to calculate co-channel interferences, both in the downlink and in the uplink of a single satellite/space-based mobile communications system, due to the reuse of frequencies in spot beams or coverage cells. The analysis and computer code can be applied to any type of satellite or platform elevated at any height above earth. The cells or beams are defined in the angular domain, as measured from the satellite or the elevated platform, and cell centers are arranged in a hexagonal lattice. The calculation is only for a given instant of time for which the system parameters are input into the program. The results obtained in one program run are for the overall carrier to interference ratio (CIR) along with CIR for both the uplink and downlink paths. An overall carrier to noise plus interference ratio (CNIR) is also calculated, which exemplifies the degradation in the carrier to noise ratio (CNR) of the system. Comparisons for systems with differing system scenarios are also made. For example, overall CIRs are compared for different reuse numbers (3, 4, 7, and 13) in LEO and GEO satellite systems. In conclusion, as expected, it is observed that the co-channel interference generally increases as we decrease the reuse number employed for the frequency reuse in the cells. It is also observed that co-channel interference can cause substantial degradation to the overall CNR of a system. / Master of Science
2

Performance Analysis of Diversity Techniques for Wireless Communication System

ISLAM, MD. JAHERUL January 2012 (has links)
Different diversity techniques such as Maximal-Ratio Combining (MRC), Equal-Gain Combining (EGC) and Selection Combining (SC) are described and analyzed. Two branches (N=2) diversity systems that are used for pre-detection combining have been investigated and computed. The statistics of carrier to noise ratio (CNR) and carrier to interference ratio (CIR) without diversity assuming Rayleigh fading model have been examined and then measured for diversity systems. The probability of error (p_e) vs CNR and (p_e) versus CIR have also been obtained. The fading dynamic range of the instantaneous CNR and CIR is reduced remarkably when diversity systems are used [1]. For a certain average probability of error, a higher valued average CNR and CIR is in need for non-diversity systems [1]. But a smaller valued of CNR and CIR are compared to diversity systems. The overall conclusion is that maximal-ratio combining (MRC) achieves the best performance improvement compared to other combining methods. Diversity techniques are very useful to improve the performance of high speed wireless channel to transmit data and information. The problems which considered in this thesis are not new but I have tried to organize, prove and analyze in new ways.
3

Development of a Block Processing Carrier to Noise Ratio Estimator for the Global Positioning System

Sayre, Michelle Marie 10 December 2003 (has links)
No description available.
4

An assessment of the GPS L5 signal based on multiple vendor receivers

Smyers, Serena Ashley 21 February 2012 (has links)
The L5 signal of the Global Positioning System (GPS) is becoming available on an increasing number of Block IIF satellites. As the third civilian signal, L5 is superior in signal design to the L1 C/A and L2C civilian signals. This new signal has been marked healthy for use on selected satellites since 2010, yet the hardware capable of tracking the L5 signal is still in the early stages of development. This work investigates the characteristics of the new signal and the quality of data produced by L5-tracking receivers. Commonly used receiver models chosen for this study are the Leica GRX1200+GNSS, the Trimble NetR8, and the Javad Delta TRE-G3TH. The metrics used in this analysis to assess the quality of data produced by these receivers are signal strength, receiver phase noise, receiver code noise, and multipath. The data used in these analyses were obtained from the International GNSS Service for the days of the year 275 to 281 in 2011. Metrics averaged over the GPS week 1656 provide a good indication of the overall performance of the receivers. / text
5

Koexistence mobilních komunikačních systémů GSM-EDGE a UMTS / GSM-EDGE and UMTS Systems Coexistence

Gleissner, Filip January 2009 (has links)
The dissertation thesis deals with the investigation of the coexistence of GSM–EDGE and UMTS systems with focus on the physical layer of the systems. The aim is to provide a set of recommendations for practical cooperation while the systems operate in both the separated and the common radio bands. A detailed description of signal processing of both the systems on the physical layer is presented. On the basis of this description, models of both systems were created and implemented in the MATLAB environment. The simulations are focused on the physical layer quality parameters, especially the bit error ratio evaluation for various ratios of useful signal power to noise power during the transmission over the radio channel. Simulation is also used to examine the quality of received useful signal while it is interfered by signals from the same and adjacent channels. The purpose is to determine the isolation between these adjacent channels, when the bit error ratio of the useful signal does not exceed a certain reference value. The simulation results are subsequently subjected to comparison with the results of the experimental measurements in laboratory conditions. Before the measurements are carried out, a study of possible interference types is performed. Consequently, the crucial parameters of the measuring equipment used are verified. From the results of simulations and measurements, the proposal of a minimum and recommended carrier separation between both the systems is presented in order to efficiently utilize the assigned frequency spectrum. Furthermore, for the cooperation in both the separated and the common radio bands, the necessary precautions are given for reaching the required isolation and thereby inter-system interference minimization.

Page generated in 0.0509 seconds