• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctions et régulations des protéines PARP2 et de XRCC1 dans la réparation des dommages à l’ADN / Functions and Regulation of PARP2 and XRCC1 Proteins in DNA Repair

Fouquin, Alexis 15 September 2017 (has links)
Les modifications post-traductionnelles des protéines par des polymères d’ADP-ribose (PAR) ou par phosphorylation permet l’assemblage des complexes de la réparation de l’ADN à la chromatine endommagée dont les fonctions sont essentielles pour assurer le maintien de la stabilité du génome. En réponse aux lésions de l’ADN, l’activité de synthèse de PAR des protéines PARP1 et PARP2 est fortement stimulée. Les PAR servent de signalisation pour le recrutement de multiples protéines, dont la protéine plateforme XRCC1.Les études menées au cours de cette thèse ont porté sur l’étude de la régulation des fonctions des protéines PARP1, PARP2 dans la réparation des cassures double brins (CDB) et l’étude des modifications de XRCC1 par phosphorylation en réponse à des dommages de l’ADN. En utilisant des substrats permettant de mesurer l’efficacité des différentes voies de réparation des CDB, nous avons démontré que PARP2, et non PARP1, est impliqué dans la régulation du choix des voies de la réparation des CDB. Plus spécifiquement, nous avons montré que PARP2 stimule l’initiation de la résection des extrémités des CDB dépendante de CtIP, indépendamment de son activité catalytique. Par des approches de vidéo-microscopie, nous avons pu déterminer que PARP2 limite l’accumulation de 53BP1 aux sites de dommages induits par micro-irradiation laser. Nous proposons que la protéine PARP2, en limitant le recrutement de la protéine 53BP1 aux sites de dommages, favorise la réparation des CDB dépendante de la résection des extrémités d’ADN, au détriment de la voie canonique de jonction des extrémités. Ces résultats sont les premiers démontrant un rôle de PARP2 dans le choix des voies de réparation des CDB.En parallèle, nous avons analysé comment la phosphorylation régule les fonctions de la protéine XRCC1. Par des approches in vitro et in vivo, nous avons pu déterminer que l’interdomaine 1 de XRCC1 est phosphorylé par la kinase CDK5. En réponse aux dommages induits par un agent alkylant, XRCC1 est activement déphosphorylé in vivo. De plus, nous avons observé que lorsque l’interdomaine 1 ne peut pas être phosphorylé in vitro, l’interaction de XRCC1 avec les PAR synthétisés par PARP1 et PARP2 augmente, et le recrutement de XRCC1 aux sites de dommages de l’ADN est accru. Ces résultats indiquent pour la première fois que la déphosphorylation de XRCC1 en réponse à un stress génotoxique participe activement à son recrutement aux sites de dommages.Dans leur ensemble, ces travaux ont contribué à améliorer nos connaissances fondamentales des réseaux de protéines impliquées dans la prise en charge des dommages de l’ADN. La compréhension de ces mécanismes est essentielle non seulement car ils participent au maintien de la stabilité du génome mais aussi du fait du développement exponentiel de nouvelles stratégies anti-tumorales qui visent à inhiber les voies de la réparation dans la but de cibler spécifiquement les cellules cancéreuses. / Post-translational modifications of proteins by polymers of ADP-ribose (PAR) or by phosphorylation allow the assembly of DNA repair protein complexes at damaged chromatin and are crucial to ensure genome stability. In response to DNA insults, the synthesis of PAR by the PARP1 and PARP2 proteins is strongly induced. PAR act as a signaling platform for the recruitment of multiples proteins at the sites of DNA damages, including the scaffold protein XRCC1. Research conducted during this PhD have been focused on studying the regulation of PARP1 and PARP2 functions in double-strands break repair (DSBR), and in investigating the role of XRCC1 modifications by phosphorylation in response to DNA damage.Using DNA repair assay allowing us to assess the accuracy of the different DSBR pathways, we demonstrated that PARP2, and not PARP1, is involved in the regulation of DNA double-strands break repair pathway choice. More precisely, we showed that PARP2 stimulates CtIP dependent initiation of end-resection at DSB, independently of its catalytic activity. By live cell imaging, we were able to determine that PARP2 limit 53BP1 accumulation at DNA damage sites induced by laser-microirradiation. We propose that by limiting 53BP1 accumulation at DNA damage sites, PARP2 stimulate DSB repair pathway that depend on DNA end-resection, thus counteracting the canonical end-joining pathway. These results are the first demonstrating a role for PARP2 in DNA DBSR pathway choice.In addition, we analyzed how the functions of XRCC1 are regulated by phosphorylation. Using in vitro and in vivo approaches, we were able to demonstrate that the linker 1 region of XRCC1 is phosphorylated by the CDK5 kinase. XRCC1 is actively dephosphorylated in response to DNA damage induced by an alkylating agent in vivo. We also observed that when the linker 1 cannot be phosphorylated, the XRCC1 interaction between the PAR synthetized by PARP1 and PARP2 is stimulated, and XRCC1 recruitement at the sites of DNA damage is far more efficient. These evidences indicate for the first time that the dephosphorylation of XRCC1 actively participate in its recruitment at the site of DNA damage. Put together, this work contributed to strengthen our fundamental knowledge of the protein network involved in the DNA damage response. Knowledge of those mechanisms is crucial since they participate in maintaining genome stability, and because new antitumoral drugs targeting DNA repair pathways in the attempt to specifically killed tumor cells are exponentially released.
2

Trafic intranucléaire de l’ARN de la télomérase et la réponse aux dommages à l’ADN chez la levure Saccharomyces cerevisiae

Ouenzar, Faissal 08 1900 (has links)
Les cassures double-brins d’ADN (CDBs) constituent une menace pour la viabilité cellulaire et l’intégrité du génome puisque l’absence de la réparation d’une CDB pourrait conduire à la mort cellulaire. En plus de la réparation par jonction d’extrémités nonhomologues (NHEJ) en phase G1 et de la recombinaison homologue (RH) en phase S et G2, les CDBs peuvent être réparées par l’ajout de télomères par l’action de la télomérase; un phénomène qui s’appelle l’ajout de télomères de novo. Ce phénomène pourrait mettre en danger la stabilité génomique parce qu’il engendre, dans la plupart des cas, une perte du bras chromosomique du fragment non-centromérique. En conséquence, ceci engendre soit une perte de l’hétérozygotie (LOH) dans les cellules diploïdes ou la mort cellulaire dans les cellules haploïdes. Dans le but d’empêcher la formation de télomères de novo, la cellule possède des mécanismes et des voies qui préviennent l’action inappropriée de la télomérase à des CDBs. Une des principales questions dans le domaine est de comprendre comment la cellule inhibe l’ajout de télomères de novo par la télomérase en favorisant la réparation des CDBs par les autres voies (NHEJ et la RH).Dans ce projet, nous utilisons la technique d’hybridation in situ en fluorescence (FISH) sur le facteur limitant de la télomérase, l’ARN TLC1 de la levure S. cerevisiae. Nous avons pu montrer que l’ARN TLC1 fait un trafic intranucléaire durant le cycle cellulaire des cellules sauvages. En phase G1/S, l’ARN TLC1 adopte une localisation nucléoplasmique avec les télomères, alors qu’il s’accumule au nucléole en phase G2/M. Nous avons fait l’hypothèse que l’accumulation de l’ARN TLC1 au nucléole en G2/M pourrait réduire la compétition entre la RH, qui est exclusivement nucléoplasmique, et la télomérase pour la réparation des CDBs. Pour tester cette hypothèse, nous avons employé la bléomycine (blm), un composé chimique générant des CDBs, pour traiter des cellules sauvages ou déficientes de la RH par la délétion du gène RAD52. Nous avons observé que l’ARN TLC1 conserve une localisation nucléolaire dans les cellules sauvages traitées par la blm en phase G2/M, alors que dans lescellules délétées de RAD52 exposées à la blm, l’ARN TLC1 se localise maintenant au nucléoplasme et s’associe partiellement aux sites de cassures. De plus, nous avons trouvé que l’accumulation nucléoplasmique de l’ARN TLC1 dans les cellules délétéées de RAD52 traitées à la blm, dépend de la voie de dommage à l’ADN (MRX, ATM/Tel1 et ATR/Mec1) et de la sumoylation par la SUMO E3ligase, Siz1. Plus particulièrement, l’association de la télomérase à des CDBs dépend de son interaction avec Cdc13, une protéine qui recrute la télomérase aux télomères. D’une manière surprenante, nous avons observé une accumulation rapide de Cdc13 à des CDBs en absence de Rad52, bien que nos résultats suggèrent que Rad52 empêche l’accumulation de l’ARN TLC1 au nucléoplasme par l’inhibition de l’accumulation de Cdc13 aux sites de cassures. L’ensemble de nos résultats ont mis en évidence que la télomérase est normalement exclue des sites de la réparation d’ADN. Cependant, en absence d’une voie fonctionnelle de la RH, la télomérase se localise du nucléole au nucléoplasme et s’accumule partiellement à des CDBs d’une manière dépendante de Cdc13 et Siz1. / DNA double-strand breaks (DSB) constitute a threat to genome integrity and cell survival if they are not repaired. In addition to canonical DNA repair systems such as nonhomologous end joining (NHEJ) in G1 and homologous recombination (HR) in S and G2 phases, DSBs can also be repaired by addition of new telomeres by telomerase. This phenomenon is referred to as telomere healing or de novo telomere addition. This process threatens genome stability since it results in chromosome arm loss, which could be lethal in haploid cells and lead to loss of heterozygosity (LOH) in diploid cells. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. One of the questions driving this field is to understand how telomere addition by telomerase is inhibited and DSBs repair can be efficiently performed by canonical DSB repair (NHEJ and HR). In this project, we used fluorescent in situ hybridization (FISH) to detect the endogenous TLC1 RNA, which is the limiting component of telomerase of the budding yeast. Using this technique, we found that TLC1 RNA traffics inside the nucleus during the cell cycle of wild-type cells. In G1 and S phases, TLC1 RNA adopts a nucleoplasmic localization, which is related to its function in telomere elongation, while it accumulates in the nucleolus in G2/M. We hypothesize that the nucleolar accumulation of TLC1 RNA in G2/M may reduce the possibility that telomerase interferes with HR to repair DNA DSB, since HR is excluded from the nucleolus and occurs only in the nucleoplasm. To test this hypothesis, we treated wild-type and rad52 (HR deficient cells) with bleomycin, a radiomimetic agent that generates preferentially DSBs. Our results show that after induction of DSB with bleomycin, TLC1 RNA remains nucleolar in wild-type cells in G2/M, but accumulates in the nucleoplasm and colocalizes partially with DSBs sites in rad52 cells, suggesting that RAD52 inhibits the nucleoplasmic accumulation of TLC1 RNA in the presence of DSBs. Nucleoplasmic accumulation of TLC1 RNA after DSB induction requires the DNA damage pathway (MRX, ATM/Tel1 and ATR/Mec1), and the SUMO ligase E3 Siz1. Interestingly, association of TLC1 RNA with DSBs depends on the single-strand telomeric binding protein Cdc13, which rapidly accumulates at sites of DNA damage, while Rad52 suppresses this process by inhibiting Cdc13 accumulation at DSBs. These results suggest that telomerase is normally excluded from sites of DNA repair. In the absence of functional homologous recombination, telomerase leaves the nucleolus and accumulates partially at DSB in the nucleoplasm in a Cdc13- and Siz1-dependent manner.

Page generated in 0.0346 seconds