Spelling suggestions: "subject:"catalisadores : rutênio"" "subject:"catalisadores : rutênios""
1 |
Catalytic carbon dioxide transformation catalysed ruthenium in ionic liquidsAli, Meher January 2016 (has links)
Catalytic CO2 transformation signified a paradigm shift towards the fabrication of contemporary chemical energy. The abundance of CO2 and the impending storage of fossil building blocks, has led to the proposal that CO2 should be the C1‐building block of the future. This doctoral thesis based on the development of an efficient homogeneous Ru‐catalytic system in ionic liquids, and its exploitation for Ru‐catalyzed carbonylations reactions with CO2 as CO source. Primarily synthesized task‐specific ionic Liquids for the generation of an active homogeneous Ru‐catalytic system by reacting with Ru3(CO)12 precursor. Then reaction was optimized for the Ru‐catalyzed selective hydroformylation of alkenes with CO2, and also investigated the mechanistic insight (Chapter‐ 3). The reaction of 1methyl3nbutylimidazolium chloride [BMI•Cl], or 1nbutyl2,3dimethyl limidazolium Chloride [BMMI•Cl] with Ru3(CO)12 generates Ru‐hydride‐carbonylcarbene species insitu that are efficient catalysts for Reverse Water Gas‐Shift (RWGS) / hydroformylation / hydrogenation cascade reaction. The addition of H3PO4 increases the catalytic activity of the first step (i.e., the reduction of CO2 to CO). Under optimized reaction conditions (120 ºC and 60 bar CO2/H2 (1:1) for 17 h), cyclohexene and 2,2‐disubstituted alkenes were easily functionalized to alcohols via a sequential hydroformylation‐carbonyl reduction by hydride transfer and protonolysis. These active Ru‐hydride‐carbonyl‐carbene species further strongly catalyzed the selective hydroaminomethylation of alkenes, and Nformylation amines with CO2 as CO source (Chapter‐4). Addition of P(OEt)3 and H3PO4 substantially and selectively formed hydroaminomethylation of alkenes, and N‐fomylation of amines, while N‐methylation of amines was not observed. The Insitu generated Ru‐hydride‐cabonyl‐carbene species are more efficient towards carbonylations of alkenes as compared to N‐formylation of amines. Furthermore mechanistic studies revealed hydroaminomethylation of alkenes involve in a sequence of RWGSR / hydroformylation / reductive amination by hydrogenation of imines and enamines intermediates. Interestingly, in the presence of stable phosphine additives the same catalytic system promoted N‐methylation of amines, and hydrogenation of alkenes. These findings of the CO2 transformation provided a new and highly valuable opportunity to get advantage of abundant CO2 as CO source for important industrial carbonylation processes, such as for the production of fragrances, and useful chemicals. Furthermore, the thesis work included the synthesis of well‐distributed Pd‐NPs (ca. 3.7 nm) deposited onto active carbon by magnetron‐sputtering process. Subsequently the catalytic performances were evaluated in the super hydrogenation of model of model substrates (i.e., nitrobenzene, 1,3‐cyclohexadiene and cyclohexene) at 75ºC under 4 bar dihydrogen (H2). The catalytic results revealed improved efficiencies in terms of activity and selectivity to those displayed by commercially available catalyst. Disproportion of 1,3‐cyclohexadiene and cyclohexene were revealed also as active processes under reaction conditions.
|
2 |
Catalytic carbon dioxide transformation catalysed ruthenium in ionic liquidsAli, Meher January 2016 (has links)
Catalytic CO2 transformation signified a paradigm shift towards the fabrication of contemporary chemical energy. The abundance of CO2 and the impending storage of fossil building blocks, has led to the proposal that CO2 should be the C1‐building block of the future. This doctoral thesis based on the development of an efficient homogeneous Ru‐catalytic system in ionic liquids, and its exploitation for Ru‐catalyzed carbonylations reactions with CO2 as CO source. Primarily synthesized task‐specific ionic Liquids for the generation of an active homogeneous Ru‐catalytic system by reacting with Ru3(CO)12 precursor. Then reaction was optimized for the Ru‐catalyzed selective hydroformylation of alkenes with CO2, and also investigated the mechanistic insight (Chapter‐ 3). The reaction of 1methyl3nbutylimidazolium chloride [BMI•Cl], or 1nbutyl2,3dimethyl limidazolium Chloride [BMMI•Cl] with Ru3(CO)12 generates Ru‐hydride‐carbonylcarbene species insitu that are efficient catalysts for Reverse Water Gas‐Shift (RWGS) / hydroformylation / hydrogenation cascade reaction. The addition of H3PO4 increases the catalytic activity of the first step (i.e., the reduction of CO2 to CO). Under optimized reaction conditions (120 ºC and 60 bar CO2/H2 (1:1) for 17 h), cyclohexene and 2,2‐disubstituted alkenes were easily functionalized to alcohols via a sequential hydroformylation‐carbonyl reduction by hydride transfer and protonolysis. These active Ru‐hydride‐carbonyl‐carbene species further strongly catalyzed the selective hydroaminomethylation of alkenes, and Nformylation amines with CO2 as CO source (Chapter‐4). Addition of P(OEt)3 and H3PO4 substantially and selectively formed hydroaminomethylation of alkenes, and N‐fomylation of amines, while N‐methylation of amines was not observed. The Insitu generated Ru‐hydride‐cabonyl‐carbene species are more efficient towards carbonylations of alkenes as compared to N‐formylation of amines. Furthermore mechanistic studies revealed hydroaminomethylation of alkenes involve in a sequence of RWGSR / hydroformylation / reductive amination by hydrogenation of imines and enamines intermediates. Interestingly, in the presence of stable phosphine additives the same catalytic system promoted N‐methylation of amines, and hydrogenation of alkenes. These findings of the CO2 transformation provided a new and highly valuable opportunity to get advantage of abundant CO2 as CO source for important industrial carbonylation processes, such as for the production of fragrances, and useful chemicals. Furthermore, the thesis work included the synthesis of well‐distributed Pd‐NPs (ca. 3.7 nm) deposited onto active carbon by magnetron‐sputtering process. Subsequently the catalytic performances were evaluated in the super hydrogenation of model of model substrates (i.e., nitrobenzene, 1,3‐cyclohexadiene and cyclohexene) at 75ºC under 4 bar dihydrogen (H2). The catalytic results revealed improved efficiencies in terms of activity and selectivity to those displayed by commercially available catalyst. Disproportion of 1,3‐cyclohexadiene and cyclohexene were revealed also as active processes under reaction conditions.
|
3 |
Catalytic carbon dioxide transformation catalysed ruthenium in ionic liquidsAli, Meher January 2016 (has links)
Catalytic CO2 transformation signified a paradigm shift towards the fabrication of contemporary chemical energy. The abundance of CO2 and the impending storage of fossil building blocks, has led to the proposal that CO2 should be the C1‐building block of the future. This doctoral thesis based on the development of an efficient homogeneous Ru‐catalytic system in ionic liquids, and its exploitation for Ru‐catalyzed carbonylations reactions with CO2 as CO source. Primarily synthesized task‐specific ionic Liquids for the generation of an active homogeneous Ru‐catalytic system by reacting with Ru3(CO)12 precursor. Then reaction was optimized for the Ru‐catalyzed selective hydroformylation of alkenes with CO2, and also investigated the mechanistic insight (Chapter‐ 3). The reaction of 1methyl3nbutylimidazolium chloride [BMI•Cl], or 1nbutyl2,3dimethyl limidazolium Chloride [BMMI•Cl] with Ru3(CO)12 generates Ru‐hydride‐carbonylcarbene species insitu that are efficient catalysts for Reverse Water Gas‐Shift (RWGS) / hydroformylation / hydrogenation cascade reaction. The addition of H3PO4 increases the catalytic activity of the first step (i.e., the reduction of CO2 to CO). Under optimized reaction conditions (120 ºC and 60 bar CO2/H2 (1:1) for 17 h), cyclohexene and 2,2‐disubstituted alkenes were easily functionalized to alcohols via a sequential hydroformylation‐carbonyl reduction by hydride transfer and protonolysis. These active Ru‐hydride‐carbonyl‐carbene species further strongly catalyzed the selective hydroaminomethylation of alkenes, and Nformylation amines with CO2 as CO source (Chapter‐4). Addition of P(OEt)3 and H3PO4 substantially and selectively formed hydroaminomethylation of alkenes, and N‐fomylation of amines, while N‐methylation of amines was not observed. The Insitu generated Ru‐hydride‐cabonyl‐carbene species are more efficient towards carbonylations of alkenes as compared to N‐formylation of amines. Furthermore mechanistic studies revealed hydroaminomethylation of alkenes involve in a sequence of RWGSR / hydroformylation / reductive amination by hydrogenation of imines and enamines intermediates. Interestingly, in the presence of stable phosphine additives the same catalytic system promoted N‐methylation of amines, and hydrogenation of alkenes. These findings of the CO2 transformation provided a new and highly valuable opportunity to get advantage of abundant CO2 as CO source for important industrial carbonylation processes, such as for the production of fragrances, and useful chemicals. Furthermore, the thesis work included the synthesis of well‐distributed Pd‐NPs (ca. 3.7 nm) deposited onto active carbon by magnetron‐sputtering process. Subsequently the catalytic performances were evaluated in the super hydrogenation of model of model substrates (i.e., nitrobenzene, 1,3‐cyclohexadiene and cyclohexene) at 75ºC under 4 bar dihydrogen (H2). The catalytic results revealed improved efficiencies in terms of activity and selectivity to those displayed by commercially available catalyst. Disproportion of 1,3‐cyclohexadiene and cyclohexene were revealed also as active processes under reaction conditions.
|
4 |
Catalisadores de rutênio e platina empregando líquido iônico como agente estabilizante : síntese, caracterização e aplicação em reações de hidrogenação parcial de benzenoViscardi, Janine Rachel January 2016 (has links)
Nanopartículas (NPs) de platina e rutênio (Alloy e Core-Shell), estabilizadas pelo líquido iônico (LI) hexafluorofosfato de 1-n-butil-3-metilimidazólio (BMI.PF6), foram sintetizadas por método químico. Esses catalisadores foram caracterizados através das técnicas de Difração de Raios X (DRX), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia de Emissão de Fotoelétrons Excitados por Raios X (XPS - sigla em inglês). De acordo com os dados obtidos, as NPs sintetizadas em LI se mantiveram efetivamente distribuídas e estabilizadas. Essas NPs foram catalisadores ativos para hidrogenação parcial de benzeno, e dependendo o arranjo das NPs metálicas, isto é, Alloy ou Core-Shell apresentaram diferentes comportamentos catalíticos. As NPs Pt-Ru, com diâmetro médio de 2,5 nm, atingiram números de turnover (TON) de até 271 com uma frequência de turnover (TOF) de 0,25 min-1, enquanto que NPs Ru@Pt, com diâmetro médio de 2,4 nm, atingiram TON de até 755 e TOF de 0,68 min-1. / Nanoparticles (NPs) of platinum and ruthenium (Alloy and Core-Shell), stabilized by ionic liquid (IL) 1 -n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF6) were synthesized by chemical methods. These catalysts were characterized by the techniques of X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). According to the data obtained NPs synthesized in IL remained effectively distributed and stabilized. These NPs are active catalysts for the partial hydrogenation of benzene and depending on the arrangement of metal in NPs surfaces, i.e., Alloy or Core-Shell had different catalytic behavior. NPs Pt- Ru, with an average diameter of 2.5 nm reached turnover number (TON) of up to 271 and a turnover frequency (TOF) of 0.25 min-1 while Ru@Pt NPs, with a mean diameter of 2.4 nm, reached TON of up to 755 and TOF of 0,68 min-1.
|
5 |
Catalisadores de rutênio em líquidos iônicos suportados : síntese e aplicação na reação de hidrogenação de benzenoFoppa, Lucas January 2015 (has links)
Nanopartículas (NPs) de rutênio bem distribuídas foram produzidas sobre suportes de Al2O3 modificados por líquidos iônicos (LIs) derivados do cátion imidazólio ancorados covalentemente contendo diferentes ânions e cadeias laterais alquílicas do cátion por simples Sputtering de um alvo de rutênio. Esses catalisadores foram caracterizados através das técnicas de microscopia eletrônica (MET) e espectroscopia de fotoelétrons excitados por raios-X (XPS). De acordo com os dados obtidos por MET, o tamanho das NPs é controlado pela quantidade de metal depositada. Além disso, a estrutura do LI suportado pode ser estudada a partir de modelos para os espectros XPS de regiões de interesse. Essas NPs são catalisadores ativos para a hidrogenação de benzeno e dependendo da natureza do LI utilizado para modificar o suporte (hidrofílico ou hidrofóbico), diferentes comportamentos catalíticos foram observados. Números de turnover (TON) de até 27000 com uma frequência de turnover (TOF) de 9830 h-1 foram alcançados com NPs de rutênio de 6,4 nm suportadas em Al2O3 modificado com LI contendo o ânion N(SO2CF3)2-, enquanto que valores superiores de seletividade inicial para ciclohexeno (20% à conversão de benzeno de 1%) foram atingidos para NPs de rutênio de 6,6 nm no caso em que os ânions Cl- e BF4- foram usados. Essas observações sugerem que o LI suportado interage com a superfície das NPs, modificando a reatividade desses sistemas catalíticos. Essas descobertas abrem um novo leque de oportunidades no desenvolvimento de NPs metálicas com tamanho controlado e reatividade modificável. / Well-distributed ruthenium nanoparticles (NPs) were produced over Al2O3 supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a ruthenium foil. These catalyts were characterised by means of electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). According to data obtained by TEM, the size of the NPs is controlled by the amount of sputtered metal. Furthermore, the structure of the supported IL can be studied using models to fit XPS spectra of regions of interest. These NPs are active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic profiles were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 9830 h-1 were achieved with ruthenium NPs of 6.4 nm supported in Al2O3 modified with an ILcontaining the N(SO2CF3)2- anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for ruthenium NPs of 6.6 nm in the case where Cl- and BF4- anions were used. Such observations strongly suggest that the supported IL interacts with the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled metal NPs with tuneable reactivity.
|
6 |
Catalisadores de rutênio e platina empregando líquido iônico como agente estabilizante : síntese, caracterização e aplicação em reações de hidrogenação parcial de benzenoViscardi, Janine Rachel January 2016 (has links)
Nanopartículas (NPs) de platina e rutênio (Alloy e Core-Shell), estabilizadas pelo líquido iônico (LI) hexafluorofosfato de 1-n-butil-3-metilimidazólio (BMI.PF6), foram sintetizadas por método químico. Esses catalisadores foram caracterizados através das técnicas de Difração de Raios X (DRX), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia de Emissão de Fotoelétrons Excitados por Raios X (XPS - sigla em inglês). De acordo com os dados obtidos, as NPs sintetizadas em LI se mantiveram efetivamente distribuídas e estabilizadas. Essas NPs foram catalisadores ativos para hidrogenação parcial de benzeno, e dependendo o arranjo das NPs metálicas, isto é, Alloy ou Core-Shell apresentaram diferentes comportamentos catalíticos. As NPs Pt-Ru, com diâmetro médio de 2,5 nm, atingiram números de turnover (TON) de até 271 com uma frequência de turnover (TOF) de 0,25 min-1, enquanto que NPs Ru@Pt, com diâmetro médio de 2,4 nm, atingiram TON de até 755 e TOF de 0,68 min-1. / Nanoparticles (NPs) of platinum and ruthenium (Alloy and Core-Shell), stabilized by ionic liquid (IL) 1 -n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF6) were synthesized by chemical methods. These catalysts were characterized by the techniques of X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). According to the data obtained NPs synthesized in IL remained effectively distributed and stabilized. These NPs are active catalysts for the partial hydrogenation of benzene and depending on the arrangement of metal in NPs surfaces, i.e., Alloy or Core-Shell had different catalytic behavior. NPs Pt- Ru, with an average diameter of 2.5 nm reached turnover number (TON) of up to 271 and a turnover frequency (TOF) of 0.25 min-1 while Ru@Pt NPs, with a mean diameter of 2.4 nm, reached TON of up to 755 and TOF of 0,68 min-1.
|
7 |
Catalisadores de rutênio e platina empregando líquido iônico como agente estabilizante : síntese, caracterização e aplicação em reações de hidrogenação parcial de benzenoViscardi, Janine Rachel January 2016 (has links)
Nanopartículas (NPs) de platina e rutênio (Alloy e Core-Shell), estabilizadas pelo líquido iônico (LI) hexafluorofosfato de 1-n-butil-3-metilimidazólio (BMI.PF6), foram sintetizadas por método químico. Esses catalisadores foram caracterizados através das técnicas de Difração de Raios X (DRX), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia de Emissão de Fotoelétrons Excitados por Raios X (XPS - sigla em inglês). De acordo com os dados obtidos, as NPs sintetizadas em LI se mantiveram efetivamente distribuídas e estabilizadas. Essas NPs foram catalisadores ativos para hidrogenação parcial de benzeno, e dependendo o arranjo das NPs metálicas, isto é, Alloy ou Core-Shell apresentaram diferentes comportamentos catalíticos. As NPs Pt-Ru, com diâmetro médio de 2,5 nm, atingiram números de turnover (TON) de até 271 com uma frequência de turnover (TOF) de 0,25 min-1, enquanto que NPs Ru@Pt, com diâmetro médio de 2,4 nm, atingiram TON de até 755 e TOF de 0,68 min-1. / Nanoparticles (NPs) of platinum and ruthenium (Alloy and Core-Shell), stabilized by ionic liquid (IL) 1 -n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF6) were synthesized by chemical methods. These catalysts were characterized by the techniques of X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). According to the data obtained NPs synthesized in IL remained effectively distributed and stabilized. These NPs are active catalysts for the partial hydrogenation of benzene and depending on the arrangement of metal in NPs surfaces, i.e., Alloy or Core-Shell had different catalytic behavior. NPs Pt- Ru, with an average diameter of 2.5 nm reached turnover number (TON) of up to 271 and a turnover frequency (TOF) of 0.25 min-1 while Ru@Pt NPs, with a mean diameter of 2.4 nm, reached TON of up to 755 and TOF of 0,68 min-1.
|
8 |
Catalisadores de rutênio em líquidos iônicos suportados : síntese e aplicação na reação de hidrogenação de benzenoFoppa, Lucas January 2015 (has links)
Nanopartículas (NPs) de rutênio bem distribuídas foram produzidas sobre suportes de Al2O3 modificados por líquidos iônicos (LIs) derivados do cátion imidazólio ancorados covalentemente contendo diferentes ânions e cadeias laterais alquílicas do cátion por simples Sputtering de um alvo de rutênio. Esses catalisadores foram caracterizados através das técnicas de microscopia eletrônica (MET) e espectroscopia de fotoelétrons excitados por raios-X (XPS). De acordo com os dados obtidos por MET, o tamanho das NPs é controlado pela quantidade de metal depositada. Além disso, a estrutura do LI suportado pode ser estudada a partir de modelos para os espectros XPS de regiões de interesse. Essas NPs são catalisadores ativos para a hidrogenação de benzeno e dependendo da natureza do LI utilizado para modificar o suporte (hidrofílico ou hidrofóbico), diferentes comportamentos catalíticos foram observados. Números de turnover (TON) de até 27000 com uma frequência de turnover (TOF) de 9830 h-1 foram alcançados com NPs de rutênio de 6,4 nm suportadas em Al2O3 modificado com LI contendo o ânion N(SO2CF3)2-, enquanto que valores superiores de seletividade inicial para ciclohexeno (20% à conversão de benzeno de 1%) foram atingidos para NPs de rutênio de 6,6 nm no caso em que os ânions Cl- e BF4- foram usados. Essas observações sugerem que o LI suportado interage com a superfície das NPs, modificando a reatividade desses sistemas catalíticos. Essas descobertas abrem um novo leque de oportunidades no desenvolvimento de NPs metálicas com tamanho controlado e reatividade modificável. / Well-distributed ruthenium nanoparticles (NPs) were produced over Al2O3 supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a ruthenium foil. These catalyts were characterised by means of electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). According to data obtained by TEM, the size of the NPs is controlled by the amount of sputtered metal. Furthermore, the structure of the supported IL can be studied using models to fit XPS spectra of regions of interest. These NPs are active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic profiles were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 9830 h-1 were achieved with ruthenium NPs of 6.4 nm supported in Al2O3 modified with an ILcontaining the N(SO2CF3)2- anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for ruthenium NPs of 6.6 nm in the case where Cl- and BF4- anions were used. Such observations strongly suggest that the supported IL interacts with the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled metal NPs with tuneable reactivity.
|
9 |
Catalisadores de rutênio em líquidos iônicos suportados : síntese e aplicação na reação de hidrogenação de benzenoFoppa, Lucas January 2015 (has links)
Nanopartículas (NPs) de rutênio bem distribuídas foram produzidas sobre suportes de Al2O3 modificados por líquidos iônicos (LIs) derivados do cátion imidazólio ancorados covalentemente contendo diferentes ânions e cadeias laterais alquílicas do cátion por simples Sputtering de um alvo de rutênio. Esses catalisadores foram caracterizados através das técnicas de microscopia eletrônica (MET) e espectroscopia de fotoelétrons excitados por raios-X (XPS). De acordo com os dados obtidos por MET, o tamanho das NPs é controlado pela quantidade de metal depositada. Além disso, a estrutura do LI suportado pode ser estudada a partir de modelos para os espectros XPS de regiões de interesse. Essas NPs são catalisadores ativos para a hidrogenação de benzeno e dependendo da natureza do LI utilizado para modificar o suporte (hidrofílico ou hidrofóbico), diferentes comportamentos catalíticos foram observados. Números de turnover (TON) de até 27000 com uma frequência de turnover (TOF) de 9830 h-1 foram alcançados com NPs de rutênio de 6,4 nm suportadas em Al2O3 modificado com LI contendo o ânion N(SO2CF3)2-, enquanto que valores superiores de seletividade inicial para ciclohexeno (20% à conversão de benzeno de 1%) foram atingidos para NPs de rutênio de 6,6 nm no caso em que os ânions Cl- e BF4- foram usados. Essas observações sugerem que o LI suportado interage com a superfície das NPs, modificando a reatividade desses sistemas catalíticos. Essas descobertas abrem um novo leque de oportunidades no desenvolvimento de NPs metálicas com tamanho controlado e reatividade modificável. / Well-distributed ruthenium nanoparticles (NPs) were produced over Al2O3 supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a ruthenium foil. These catalyts were characterised by means of electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). According to data obtained by TEM, the size of the NPs is controlled by the amount of sputtered metal. Furthermore, the structure of the supported IL can be studied using models to fit XPS spectra of regions of interest. These NPs are active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic profiles were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 9830 h-1 were achieved with ruthenium NPs of 6.4 nm supported in Al2O3 modified with an ILcontaining the N(SO2CF3)2- anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for ruthenium NPs of 6.6 nm in the case where Cl- and BF4- anions were used. Such observations strongly suggest that the supported IL interacts with the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled metal NPs with tuneable reactivity.
|
Page generated in 0.0769 seconds