Spelling suggestions: "subject:"catalyse enzymatic"" "subject:"katalyse enzymatic""
11 |
Approche multi-échelle pour l’étude de la réaction de N-acylation enzymatique d’acides aminés / Multi-scale approach for the study of enzymatic N-acylation reaction of amino acidsDettori, Léna 15 December 2017 (has links)
Approche multi-échelle pour l’étude de la réaction de N-acylation enzymatique d’acides aminés La réaction de N-acylation d’acides aminés ou de peptides permet l’obtention de dérivés de ces molécules présentant des propriétés bioactives et/ou techno-fonctionnelles, avec une biodisponibilité, une hydrophobie et une stabilité accrue. Les acides aminés acylés ont été largement décrits comme constituant une classe d'agents tensioactifs avec d'excellentes propriétés de surface, des activités biologiques intéressantes, un faible potentiel de toxicité et un faible impact environnemental. Actuellement réalisée de manière chimique à l’échelle industrielle, l’acylation de ces acides aminés ou peptides présente des contraintes en termes de sélectivité réactionnelle et d’innocuité vis-à-vis de l’environnement ainsi qu’en termes de coût de retraitement des effluents polluants. Une alternative à cette voie chimique est l’utilisation d’enzymes capables de catalyser ces réactions d’acylation. Dans la littérature, différents couples d’enzymes et de solvants ont déjà été décrits. Néanmoins, les performances réactionnelles de ces systèmes demeurent parfois limitées. L’objectif de cette thèse a donc été l’amélioration du procédé d’acylation par une approche à différentes échelles. À l’échelle moléculaire, une étude a été réalisée avec la lipase B de Candida antarctica (CALB). Une approche de modélisation moléculaire a été utilisée afin de mettre au point une méthodologie associant des simulations de docking et des calculs d’interaction permettant d’améliorer la compréhension et permettre la prédiction de la régiosélectivité de CALB lors de l’acylation de la lysine par différents acides gras. Des études ont également été conduites à l’échelle réactionnelle, notamment avec la recherche de nouveaux biocatalyseurs de type aminoacylases dans l’extrait brut de Streptomyces ambofaciens. La régiosélectivité et les performances de la réaction catalysée par ces enzymes ont été comparés à celles de CALB. Les résultats ont mis en évidence un potentiel très prometteur des aminoacylases de S. ambofaciens concernant la synthèse d’acide aminés/peptides acylés. En effet, en plus de leur aptitude à réaliser la réaction d’acylation en milieu aqueux, ces enzymes possèdent une régio-sélectivité qui diffère de celle de CALB. Cette régio-sélectivité orientée vers les groupements N-terminaux est un atout très peu décrit à ce jour, car elle permet d’acyler ces molécules sans modifier les chaînes latérales des acides aminés ou des peptides et donc leurs fonctionnalités. Dans la dernière partie de ces travaux, des études à l’échelle procédé ont été menées. Tout d’abord, l’immobilisation des aminoacylases sur des matériaux mésoporeux silicatés a été réalisée et différentes méthodes d’immobilisation ont pu être comparées. Cette étude a permis de proposer une méthode d’immobilisation des aminoacylases de S. ambofaciens par physisorption, permettant de conserver l’activité spécifique pendant au moins 3 cycles. Puis, dans une dernière partie, l’intensification de la réaction d’acylation en réacteur micro-ondes ou microstructurés a été abordée. Les expérimentations réalisées dans un réacteur chauffé par irradiation micro-onde ont montré que ce type de réacteur était adapté à la réaction d’acylation catalysé par CALB sous sa forme immobilisée commerciale (Novozym435®) en solvant organique, ce qui n’est pas le cas avec des aminoacylases de S. ambofaciens libres, en milieux aqueux. Pour cette réaction, d’autres méthodes d’intensification ont été envisagées, notamment en réacteur microstructuré de type microfluidique. L’efficacité du mélange étant primordiale notamment en milieu biphasique, celle-ci a pu être améliorée avec un taux de conversion supérieur dans ce réacteur comparativement à un réacteur classique agité mécaniquement / N-acylation of amino acids or peptides results in bioactive and/or functional molecules showing increased bioavailability, hydrophobicity and stability. Acylated amino acids have been broadly described as being a kind of surfactant with great surface chemistry properties, interesting biological activities, weak toxicity and low environmental impact. Acylation of amino acids or peptides is being performed chemically at industrial scale. It creates constraints in term of reaction selectivity, environmental safety and cost of polluted wastewater treatment. Enzymatic catalysis is an alternative to chemical acylation reaction. Several enzyme/solvent pairs have already been described in the literature. Their performance are however somewhat limited. The objective of this thesis work was thus to improve the capacity of acylation processes at different scales. At the molecular scale, a study was performed using Candida antarctica’s (CALB) lipase B. Molecular modeling was used to create a methodology coupling docking simulation and interaction calculus that would allow for a better understanding of CALB regioselectivity during lysine acylation by different fatty acids. Studies were also conducted at the reaction level, especially by searching for new aminoacylase-type of biocatalysts in Streptomyces ambofaciens raw extract. Regioselectivity and performance of these enzyme’s catalytic reactions were compared to those of CALB. Results brought into light a promising potential from S. ambofaciens’ aminoacylases in synthesizing acylated amino acids/peptides. Indeed, on top of their ability to catalyse acylation reaction in aqueous solution, these enzymes have a different regioselectivity compared to CALB’s. Regioselectivity targeting N-terminal groups is a rarely researched phenomenon allowing acylation to be performed without modifying amino acids or peptides lateral chains and hence their functionality. In the last part part of this work, studies at process scale were performed. Aminoacylase were first immobilized on mesoporous silicates and several immobilisation methods were compared. Using physisorption, a method for the immobilisation of S. ambofaciens’ aminoacylases was developed to reach a conserved specific activity during 3 cycles. Finally, intensification of acylation reaction was examined in microwave or microstructured reactors. First, an experimental set up was performed in an heated reactor using microwaves irradiation. This kind of reactor was demonstrated as being adapted to acylation reaction using a commercial immobilized form of CALB (Novozym435®) as catalyst in organic solvent. The microwave reactor was however not suited for free S. ambofaciens aminoacylase in aqueous solution. For that latter reaction, intensification had to be approached through other aspects of the process. Hydrodynamic appeared indeed as an important aspect for this reaction occurring in a biphasic medium composed of fatty acids and aqueous solution. A microstructured microfluidic reactor was hence tested. Conversion yield were increased with this system. This study demonstrated how mixing quality was an important factor for acylation reaction and could be a way to intensify the enzymatic process at larger scale
|
12 |
Mutagénèse semi-aléatoire au site actif de la DHFR humaine : création et caractérisation de variantes hautement résistantes au MTX.Volpato, Jordan 12 1900 (has links)
La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la prolifération cellulaire. Elle réduit le dihydrofolate en tétrahydrofolate, un co-facteur impliqué dans la biosynthèse des purines et du thymidylate. La DHFRh est une cible de choix pour des agents de chimiothérapie comme le méthotrexate (MTX), inhibant spécifiquement l’enzyme ce qui mène à un arrêt de la prolifération et ultimement à la mort cellulaire. Le MTX est utilisé pour le traitement de plusieurs maladies prolifératives, incluant le cancer. La grande utilisation du MTX dans le milieu clinique a mené au développement de mécanismes de résistance, qui réduisent l’efficacité de traitement. La présente étude se penche sur l’un des mécanismes de résistance, soit des mutations dans la DHFRh qui réduisent son affinité pour le MTX, dans le but de mieux comprendre les éléments moléculaires requis pour la reconnaissance de l’inhibiteur au site actif de l’enzyme. En parallèle, nous visons à identifier des variantes plus résistantes au MTX pour leur utilisation en tant que marqueurs de sélection en culture cellulaire pour des systèmes particuliers, tel que la culture de cellules hématopoïétiques souches (CHS), qui offrent des possibilités intéressantes dans le domaine de la thérapie cellulaire.
Pour étudier le rôle des différentes régions du site actif, et pour vérifier la présence d’une corrélation entre des mutations à ces régions et une augmentation de la résistance au MTX, une stratégie combinatoire a été dévelopée pour la création de plusieurs banques de variantes à des résidus du site actif à proximité du MTX lié. Les banques ont été sélectionnées in vivo dans un système bactérien en utilisant des milieux de croissance contenant des hautes concentrations de MTX. La banque DHFRh 31/34/35 généra un nombre considérable de variantes combinatoires de la DHFRh hautement résistantes au MTX. Les variantes les plus intéressantes ont été testées pour leur potentiel en tant que marqueur de sélection dans plusieurs lignées cellulaires, dont les cellules hématopoïétiques transduites. Une protection complète contre les effets cytotoxiques du MTX a été observée chez ces cellules suite à leur infection avec les variantes combinatoires. Pour mieux comprendre les causes moléculaires reliées à la résistance au MTX, des études de structure tridimensionnelle de variantes liées au MTX ont été entreprises. La résolution de la structure de la double variante F31R/Q35E lié au MTX a révélé que le phénotype de résistance était attribuable à d’importantes différences entre le site actif de la double variante et de l’enzyme native, possiblement dû à un phénomème dynamique. Une compréhension plus générale de la reconnaissance et la résistance aux antifolates a été réalisée en comparant des séquences et des structures de variantes de la DHFR résistants aux antifolates et provenant de différentes espèces.
En somme, ces travaux apportent de nouveaux éléments pour la comprehension des intéractions importantes entre une enzyme et un ligand, pouvant aider au développement de nouveaux antifolates plus efficaces pour le traitement de diverses maladies. De plus, ces travaux ont généré de nouveaux gènes de résistance pouvant être utilisés en tant que marqueurs de sélection en biologie cellulaire. / Human dihydrofolate reductase (hDHFR) is an enzyme that is essential to cell proliferation. It reduces dihydrofolate to tetrahydrofolate, an important cofactor involved in purine and thymidylate biosynthesis. hDHFR is a choice target for chemotherapeutic drugs like methotrexate (MTX), which specifically inhibits the enzyme, stopping cell proliferation and leading to cellular death. MTX is used for the treatment of many proliferative diseases, including cancers. Widespread use of MTX has lead to the development of resistance mechanisms appear which impair treatment efficiency. The present work focuses on a mechanism of resistance, namely mutations in hDHFR that reduce its affinity for MTX, to better understand the underlying mechanisms of inhibitor recognition at the active site of the enzyme. In parallel, we aim at identifying the most MTX-resistant variants to offer novel selectable markers for particular cell culture systems, such as hematopoietic cell culture, which offer important perspectives for cellular therapy.
To study the role of different regions of the hDHFR active site, and to verify if a correlation exists between mutations in these regions and increased resistance to MTX, a combinatorial strategy was developed enabling the creation of several hDHFR variant libraries at active site residues located in proximity to bound MTX. The libraries were selected in vivo in a bacterial system using culture media containing high concentration of the inhibitor. One library in particular, hDHFR 31/34/35, yielded a considerable number of highly MTX-resistant combinatorial hDHFR variants. The most interesting candidates were tested for their potential as selectable markers in various cell lines, including transduced hematopoietic cells. Complete protection from MTX-cytotoxicity was obtained for these cells following infection with the combinatorial variants. To better understand the molecular causes of MTX resistance, resolution of the crystal structures of variant proteins in presence of MTX was attempted. Resolution of the F31R/Q35E double variant revealed that the resistance phenotype was related to important differences in the active site relative to WT, possibly attributable to a dynamic motion effect. A more general comprehension of antifolate recognition and resistance was achieved by sequence and structural comparison of antifolate-resistant DHFR variants from different species.
Overall, our work contributes to the better understanding of enzyme-inhibitor interactions, which could provide new insights into the development of more efficient clinical therapies. In addition, this work has yielded novel drug-resistance genes useful as selectable markers for cellular biology.
|
13 |
Mutagénèse semi-aléatoire au site actif de la DHFR humaine : création et caractérisation de variantes hautement résistantes au MTXVolpato, Jordan 12 1900 (has links)
No description available.
|
Page generated in 0.0706 seconds