• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The structural characterisation of porous media for use as model reservoir rocks, adsorbents and catalysts

Evbuomwan, Irene Osagie January 2009 (has links)
The concept of creating heterogeneous structures by nanocasting techniques from a combination of several homogeneous surfactant templated structures to model reservoir rock properties has not been approached prior to this research project, and will be used to test and provide better understanding of gas adsorption theories such as the pore blocking phenomenon (Seaton, 1991). Porous media with controlled pore sizes and geometry can be used to mimic a variety of reservoir rock structures, as it can be engineered to consist of a network of elements which, individually, could have either regular or irregular converging and diverging portions. The restrictions in these elements are called throats, and the bulges pores. Catalysts developed from a range of Nanotechnology applications could be used in down-hole catalytic upgrading of heavy oil. They could also be used as catalyst supports or to analyse the coking performance of catalysts. These studies will highlight the pore structure effects associated with capillary trapping mechanisms in rocks, and potentially allow the manipulation of transport rates of fluids within the pore structure of catalysts. Mercury-injection capillary pressure is typically favoured for geological applications such as inferring the size and sorting of pore throats. The difference between mercury injection and withdrawal curves will be used to provide information on recovery efficiency, and also to investigate pore level heterogeneity. Mercury porosimetry studies are carried out to provide a better understanding of the retraction curve and the mechanisms controlling the extrusion process and subsequently the entrapment of the non-wetting phase. The use of model porous media with controlled pore size and surface chemistry allows these two effects to be de-convolved and studied separately. The nanotechnology techniques employed mean that uncertainty regarding exact pore geometry is alleviated because tight control of pore geometry is possible. Trapping of oil and gas on a microscopic scale in a petroleum reservoir rock is affected by the geometric and topologic properties of the pores, by the properties of the fluids and by properties related to fluid-rock interaction such as wettability. Several distinct mechanisms of trapping may occur during displacement of one fluid by another in a porous media, however in strongly water-wet rocks with large aspect ratios, trapping in individual pores caused by associated restricting throats (may be/is) the most important mechanism of trapping. The results of the proposed research will be both relevant to the Irene Osagie Evbuomwan PhD. Thesis (2009) 9 oil and gas as well as the solid mineral sector for application as catalyst or catalyst supports. By providing a better understanding of the relationship between reservoir rock pore space geometry and surface chemistry on the residual oil levels, a more accurate assessment of the potential of a particular reservoir could be generated. The analysis of gas adsorption/desorption isotherms is widely used for the characterization of porous materials with regard to their surface area, pore size, pore size distribution and porosity, which is important for optimizing their use in many practical applications. Although nitrogen adsorption at liquid nitrogen temperature is considered to be the standard procedure, recent studies clearly reveal that the use of additional probe molecules (e.g. argon, butane, carbon dioxide, water, hydrogen, and hydrocarbons e.g. cyclohexane and ethane) allows not only to check for consistency, but also leads to a more comprehensive and accurate micro/mesopore size analysis of many adsorbents. Furthermore, significant progress has been achieved during recent years with regard to the understanding of the adsorption mechanism of fluids in materials with highly ordered pore structures (e.g., M41S materials, SBA-15). This has led to major improvements in the pore size analysis of nanoporous materials. However, there are still many open questions concerning the phase and sorption behaviour of fluids in more complex pore systems, such as materials of a heterogeneous nature/differing pore structures, which are of interest for practical applications in catalysis, separation, and adsorption. In order to address some of these open questions, we have performed systematic adsorption experiments on novel nanoporous materials with well defined pore structure synthesised within this research and also on commercial porous silicas. The results of this study and experiments allow understanding and separating in detail the influence of phenomena such as, pore blocking, advanced condensation and delayed condensation on adsorption hysteresis and consequently the shape of the adsorption isotherms. The consequences of these results for an accurate and comprehensive pore size analysis of nanomaterials consisting of more complex nanoporous pore networks are also investigated.
2

Waterborne catalytic materials with original design / Elaboration de matériaux catalytiques à design original

Sierra salazar, Andrés Felipe 15 November 2017 (has links)
Catalysis is one of the Green Chemistry Principles given its importance for limiting environmental impacts and improving current processes, as well as for developing new sustainable processes and products. In order to provide more performant catalysts, this study provides a novel preparation method for controlling the distribution of metal nanoparticles (NPs) within hierarchically meso- and macroporous catalysts. It consists of the combination of latex synthesis, sonochemistry and sol-gel process. All these steps can be carried out in water, reducing environmental impact. The first step is the synthesis of latex, typically polystyrene. The second step is the sonochemical synthesis and deposition of noble metal NPs on the surface of the latex polymer. The third step is the synthesis of the support by sol-gel process using tetraethyl orthosilicate (TEOS) under controlled conditions to modulate the porosity of the final silica matrix. As a result, an original catalyst morphology is obtained with active sites preferentially located within the macropores, which are surrounded by a mesoporous matrix. Using this approach, a monodisperse polystyrene latex (~130 nm) was prepared by emulsion polymerisation and then decorated with Pt NPs (~2.3 nm) by sonochemical reduction. The mesoporous silica support was prepared by sol-gel synthesis in the presence of the decorated latex. After calcination, the organic template left behind macropores with the Pt NPs within the generated macropores. Mesopores (2-15 nm) connecting these macropores (110-400 nm) were tuned by varying the synthesis conditions. Typically, specific surface areas of 615 m2/g and total pore volumes of 0.74 cm3/g were obtained. In a first case of study, hierarchically porous Pt/SiO2 catalysts were evaluated in the selective hydrogenation of p-chloronitrobenzene (p-CNB) to produce p-chloroaniline. They exhibited activities up to 91.7 ± 2.9 molCNB/(min molPt) and selectivity values up to 100 ± 2% at 80% of conversion, in comparison with 47.7 ± 2.9 molCNB/(min molPt) and 91 ± 2%, respectively, obtained with a commercial catalyst under the same conditions. Moreover, in a second case of study, it was possible to prepare silica-supported Pd, Pd-Pt and Pd-CeO2 catalysts with hierarchical porosity (meso and macro). These materials were tested in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. The best productivity of H2O2 was obtained with the bimetallic Pd-Pt catalyst with 32500 molH2O2/(h molmetal) in batch, and the best selectivity was obtained with Pd-CeO2/SiO2 catalyst (63 ± 2%) in semi-batch. In summary, this thesis proposes a new aqueous preparation method for hierarchically porous functional materials by the combination of latex synthesis, sonochemical reduction and sol-gel process. It has been demonstrated that this preparation technique provides a very powerful and versatile toolbox for catalyst tailoring and optimisation. Further perspectives to achieve improved morphologies and controlled active sites distribution are also proposed. / La catalyse est l'un des piliers pour le développement de procédés durables, car elle permet d'utiliser moins de ressources en accélérant les réactions chimiques. Afin de fournir des catalyseurs plus performants, cette étude propose une nouvelle méthode de préparation de catalyseurs pour contrôler la distribution de nanoparticules (NPs) métalliques au sein des catalyseurs hiérarchiquement poreux (méso et macro) en combinant la synthèse de latex, la réduction sonochimique et le procédé sol-gel. La première étape est la synthèse d'une empreinte porogène de billes de polystyrène (latex) obtenues par polymérisation en émulsion aqueuse. La deuxième étape est la synthèse et le dépôt de NPs de métaux nobles sur la surface des billes de polymère par voie sonochimique dans l’eau. La troisième étape est la synthèse du support catalytique par un procédé sol-gel en milieu aqueux en utilisant le latex décoré et l’orthosilicate de tétraéthyle (TEOS) dans des conditions contrôlées pour moduler la porosité finale de la matrice de silice (mésoporeuse). Toutes les étapes de cette approche sont effectuées dans l'eau, ce qui limite les impacts environnementaux de la préparation du catalyseur. L'élimination du porogène (latex) par calcination génère les macropores. Le matériau résultant possède alors une morphologie inédite pour un catalyseur, avec des macropores fonctionnalisés par des NPs métalliques, dans une matrice de silice mésoporeuse. Ainsi, il a été possible de synthétiser un latex monodisperse de polystyrène (~130 nm), lequel a été décoré avec des NPs de Pt (~2.3 nm) par réduction sonochimique. Le matériau final de silice a présenté des mésopores (2-15 nm) reliant les macropores (110-400 nm) contenant les NPs de Pt. Il a été possible d'obtenir des surfaces spécifiques et des volumes poreux totaux de 615 m2/g et 0,74 cm3/g, respectivement. Dans un premier cas d'étude, des catalyseurs de Pt/SiO2 à porosité hiérarchique ont été évalués dans l'hydrogénation sélective du p-chloronitrobenzene (p-CNB) pour produire la p-chloroaniline. Ils ont présenté des activités catalytiques allant jusqu'à 91,7 ± 2,9 molCNB/(min molPt) et des sélectivités jusqu'à 100 ± 2% à 80% de conversion, par rapport à 47,7 ± 2,9 molCNB/(min molPt) et 91 ± 2%, respectivement, obtenus dans les mêmes conditions avec un catalyseur commercial. Dans un deuxième cas d'étude, des catalyseurs à base de Pd, Pd-Pt et Pd-CeO2 supportés sur de la silice à porosité hiérarchique ont été préparés et testés dans la synthèse directe du peroxyde d'hydrogène. La meilleure productivité a été obtenue avec le catalyseur bimétallique Pd-Pt avec 32500 molH2O2/(h molmétal) en batch, et la meilleure sélectivité a été obtenue avec le catalyseur Pd-CeO2/SiO2 (63 ± 2%) en semi-continu. En résumé, cette thèse propose une nouvelle méthode de préparation dans l’eau de matériaux fonctionnels à porosité hiérarchique en combinant la synthèse de latex, la réduction sonochimique et le procédé sol-gel. Il a été démontré que cette technique de préparation fournit une boîte à outils très puissante et polyvalente pour la préparation et l'optimisation des catalyseurs. Des perspectives pour améliorer davantage les morphologies et la distribution contrôlée des sites actifs sont également proposées.

Page generated in 0.433 seconds