• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and evolution of synthetic biological systems

Tabor, Jeffrey Jay 04 May 2015 (has links)
The study of biology has undergone a fundamental change due to advancements in genetic engineering, DNA synthesis and DNA sequencing technologies. As opposed to the traditional dissective mentality of discovering genes via genetics, describing genetic behaviors through biochemistry, and then drawing diagrams of functional networks, researchers now have the potential (albeit limited) to construct novel biological molecules, networks, and even whole organisms with user-defined specifications. We have engineered novel catalytic DNAs (deoxyribozymes) with the ability to 'read' an input DNA sequence and then 'write' (by ligation) a separate DNA sequence which can in turn be detected sensitively. In addition, the deoxyribozymes can read unnatural (synthetic) nucleotides and write natural sequence information. Such simple nanomachines could find use in a variety of applications, including the detection of single nucleotide polymorphisms in genomic DNA or the identification of difficult to detect (short) nucleic acids such as microRNAs. As an extension of in vitro biological engineering efforts, we aimed to construct novel signal transduction systems in vivo. To this end, we used directed evolution to generate a catalytic RNA (ribozyme) capable of creating genetic memory in E. coli. In the end we evolved an RNA which satisfied the conditions of our genetic screen. Rather than maintaining genetic memory, however, the RNA increased relative cellular gene expression by minimizing the translational burden it imposed on the host cell. Interestingly, detailed mutational analysis of the evolved RNA led us to new studies on the relationship between ribosome availability and stochasticity in cellular gene expression, an effect that had frequently been alluded to in the literature, yet never examined. We have also taken a more canonical approach to the forward engineering of biological systems with unnatural behaviors. To this end, we designed a protein-based synthetic genetic circuit that allows a community of E. coli to function as biological film, capable of capturing and recapitulating a projected light pattern at high resolution (theoretically 100 mexapixels). The ability to control bacterial gene expression at high resolution could be used to ‘print’ complex bio-materials or deconvolute signaling pathways through precise spatial and temporal control of regulatory states. / text

Page generated in 0.0459 seconds