Spelling suggestions: "subject:"catalytic bias"" "subject:"gatalytic bias""
1 |
The Investigation and Characterization of Redox Enzymes Using Protein Film ElectrochemistryJanuary 2014 (has links)
abstract: Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redoxactive mediators, thus allowing for interrogation of the redox protein of interest. PFE has proven a versatile tool that has been used to elucidate the properties of many technologically relevant redox proteins including hydrogenases, laccases, and glucose oxidase.
This dissertation is comprised of two parts: extension of PFE to a novel electrode material and application of PFE to the investigation of a new type of hydrogenase. In the first part, mesoporous antimony-doped tin oxide (ATO) is employed for the first time as an electrode material for protein film electrochemistry. Taking advantage of the excellent optical transparency of ATO, spectroelectrochemistry of cytochrome c is demonstrated. The electrochemical and spectroscopic properties of the protein are analogous to those measured for the native protein in solution, and the immobilized protein is stable for weeks at high loadings. In the second part, PFE is used to characterize the catalytic properties of the soluble hydrogenase I from <italic>Pyrococcus furiosus</italic> (<italic>Pf</italic>SHI). Since this protein is highly thermostable, the temperature dependence of catalytic properties was investigated. I show that the preference of the enzyme for reduction of protons (as opposed to oxidation of hydrogen) and the reactions with oxygen are highly dependent on temperature, and the enzyme is tolerant to oxygen during both oxidative and reductive catalysis. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2014
|
2 |
Etude pluridisciplinaire d'une hydrogénase : mécanisme et optimisation des propriétés catalytiques / multidisciplinary study of a hydrogenase : mechanism and optimization of catalytic propertiesAbou Hamdan, Abbas 06 November 2013 (has links)
Les hydrogénases sont des métalloenzymes qui catalysent la conversion réversible du dihydrogène en protons et en électrons. Durant ma thèse, je me suis focalisé sur certains aspects du fonctionnement de l’hydrogénase à [NiFe] hétérodimérique de Desulfovibrio fructosovorans. Nous avons montré que contrairement au mécanisme communément admis d’inactivation aérobie de l’enzyme, l’O2 n’est pas incorporé en tant que ligand au niveau du site actif mais agit plutôt comme un simple oxydant. Ce résultat remet en question le mécanisme proposé pour expliquer la tolérance naturelle à l’O2 de certaines hydrogénases. L’analyse à l’aide d’un modèle cinétique des voltamogrammes cycliques complexes obtenus avec 16 variants a montré que les vitesses d’(in)activation en conditions anaérobies peuvent être accélérées de plusieurs ordres de grandeurs. Nous avons aussi montré et expliqué la corrélation entre ces vitesses et la tolérance à l’O2. Nous avons étudié une série de mutants qui produisent H2 beaucoup plus lentement que l’enzyme sauvage. Nous avons montré que la vitesse de cette réaction est déterminée par celle de l’étape de diffusion du H2, qui est lente dans les mutants. Finalement, nous nous sommes intéressés à une thréonine appartenant à la voie putative de transfert des protons. Nous avons démontré que cet acide aminé est effectivement impliqué dans le transport des protons. Il joue aussi un rôle crucial dans la stabilisation des intermédiaires formés au cours du cycle catalytique et probablement dans la détermination des vitesses de transfert électronique et de diffusion à travers le canal. / Hydrogenases are metalloenzymes which catalyse the reversible conversion of dihydrogen into protons and electrons. In my work, I focused on some aspects of the catalytic mechanism of the heterodimeric NiFe hydrogenase from Desulfovibrio fructosovorans. We demonstrated that, contrary to the commonly accepted mechanism of aerobic inactivation, the attacking O2 is not incorporated as an active site ligand but rather acts as an electron acceptor. This finding calls for a re-examination of the mechanism for O2 tolerance of the natural O2 tolerant NiFe hydrogenases. We also described a simple analytical model that we used to analyse the complex voltammetric signals of 16 mutants obtained by substituting an amino acid near the active site. We demonstrated that this substitution can accelerate anaerobic inactivation and reactivation by up to three orders of magnitude. We also demonstrated and explained the correlation between these rates and O2-tolerance. We studied mutants whose H2-production activity is impaired. We found that the rate limiting step of this reaction is the diffusion of hydrogen out of the enzyme, through the hydrophobic channel. Finally, we focused on a threonine belonging to the putative proton transfer pathway. We demonstrated that this amino acid is indeed implicated in proton transport. It may also play a crucial role in the stabilization of intermediates formed during the catalytic cycle, and probably also in determining the rate of electron transfer and diffusion along the gas channel.
|
Page generated in 0.0625 seconds