• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing selectin-ligand bonds using atomic force microscopy (AFM)

Sarangapani, Krishna Kumar 14 July 2005 (has links)
The human body is an intricate network of many highly regulated biochemical processes and cell adhesion is one of them. Cell adhesion is mediated by specific interactions between molecules on apposing cell surfaces and is critical to many physiological and pathological processes like inflammation and cancer metastasis. During inflammation, blood-borne circulating leukocytes regularly stick to and roll on the vessel walls, which consist in part, adhesive contacts mediated by the selectin family of adhesion receptors (P-, E- and L-selectin). This is the beginning of a multi-step cascade that ultimately leads to leukocyte recruitment in areas of injury or infection. In vivo, selectin-mediated interactions take place in a hydrodynamic milieu and hence, it becomes imperative to study these interactions under very similar conditions in vitro. The goal of this project was to characterize the kinetic and mechanical properties of selectin interactions with different physiologically relevant ligands and selectin-specific monoclonal antibodies (mAbs) under a mechanically stressful milieu, using atomic force microscopy (AFM). Elasticity studies revealed that bulk of the complex compliance came from the selectins, with the ligands or mAbs acting as relatively stiffer components in the stretch experiments. Furthermore, molecular elasticity was inversely related to selectin length with the Consensus Repeats (CRs) behaving as Hookean springs in series. Besides, monomeric vs. dimeric interactions could be clearly distinguished from the elasticity measurements. L-selectin dissociation studies with P-selectin Glycoprotein Ligand 1 (PSGL-1) and Endoglycan revealed that catch bonds operated at low forces while slip bonds were observed at higher forces. These results were consistent with previous P-selectin studies and suggested that catch bonds could contribute to the shear threshold for L-selectin-mediated rolling By contrast, only slip bonds were observed for L-selectin-antibody interactions, suggesting that catch bonds could be a common characteristic of selectin-ligand interactions. Force History studies revealed that off-rates of L-selectin-sPSGL-1 (or 2-GSP-6) interactions were not just dependent on applied force, as has been widely accepted but in fact, depended on the entire history of force application, thus providing a new paradigm for how force could regulate bio-molecular interactions. Characterizing selectin-ligand interactions at the molecular level, devoid of cellular contributions, is essential in understanding the role played by molecular properties in leukocyte adhesion kinetics. In this aspect, data obtained from this project will not only add to the existing body of knowledge but also provide new insights into mechanisms by which selectins initiate leukocyte adhesion in shear.
2

Studies of platelet gpib-alpha and von willebrand factor bond formation under flow

Coburn, Leslie Ann 01 April 2010 (has links)
Understanding the differential bonding mechanics underlying bleeding disorders is of crucial importance to human health. In this research insight is provided into how four of these bleeding disorders (each with somewhat similar clinical characteristics), work at the molecular bond level. The bleeding diseases studied here can result from defects in the platelet glycoprotein (GP) Ibα the von Willebrand factor (vWF) molecule, or the ADAMTS-13 enzyme. Types 2B and 2M von Willebrand Disease (VWD) result in excess bleeding, yet type 2B has increased binding affinity between platelet GPIbα and vWF, while type 2M has decreased binding affinity between these two molecules. Platelet type VWD (pt-VWD) causes mutations in the GPIbα molecule and has similar characteristics to type 2B VWD. Further, in thrombotic thrombocytopenic purpura, bleeding results when there is a lack of active ADAMTS-13 enzyme. Each disease results in patient bleeding, but due to different mechanisms. This dissertation will explore the bonding mechanics between GPIbα and vWF and how they are altered in each disease state. To observe the GPIbα-vWF bonding mechanics, rolling velocities, transient tethering lifetimes, and tether frequency were determined using a parallel plate flow chamber. Data from these experiments suggest that wt-wt interactions are force dependent and have biphasic catch-slip bonding behavior. The data show that the shear stress at which the maximum mean stop time occurs differs between gain-of-function and loss-of-function mutations. Using similar methods, we study the changes resulting from pt-VWD mutations in GPIbα, and find that the catch bond seen for wt-wt interactions is lost for these mutations. Further, the data suggest that interactions with gain-of-function GPIbα mutations may be transport rather than force dependent. Finally, how the GPIbα-vWF tether bond changes for thrombotic thrombocytopenic purpura was also investigated to show that the bond lifetime in the absence of the enzyme is increased presenting a possible rationale for why bleeding occurs in this disease. Overall, the data show how the bonding mechanics of the GPIbα-vWF tether bond differ in four bleeding diseases. Further, these observations offer potential explanations for how these changes in the bonding mechanism may play a role in the observed patient bleeding.

Page generated in 0.047 seconds