• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pharmacokinetics of tea catechins in the rat.

January 2001 (has links)
Chen Yu. / Thesis submitted in: November 2001. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 98-112). / Abstracts in English and Chinese. / Acknowledgements --- p.I / List of publications --- p.II / Abstract --- p.III / Abstract (Chinese) --- p.IV / Abbreviations --- p.V / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Tea --- p.1 / Chapter 1.2 --- Green tea --- p.3 / Chapter a) --- Chemical composition of green tea --- p.3 / Chapter b) --- Pharmacological activities of green tea polyphenols --- p.6 / Chapter c) --- Pharmacokinetics of green tea polyphenols --- p.10 / Chapter 1.3 --- Objective --- p.14 / Chapter Chapter 2 --- Validation of analysis method for tea catechins --- p.15 / Chapter 2.1 --- Materials and methods --- p.16 / Chapter a) --- Preparation of a catechin-mixture from tea --- p.16 / Chapter b) --- Preparation of stock solutions --- p.18 / Chapter c) --- Preparation of biofluid samples --- p.18 / Chapter d) --- HPLC analysis of tea catechins --- p.19 / Chapter 2.2 --- Results --- p.21 / Chapter a) --- Catechin-mixture (tea extracts) --- p.21 / Chapter b) --- "Extraction from plasma, urine and feces" --- p.21 / Chapter c) --- HPLC analysis of biofluid samples --- p.23 / Chapter 2.4 --- Discussion --- p.26 / Chapter Chapter 3 --- Pharmacokinetics of tea catechins following administration of different doses of the catechin-mixture --- p.32 / Chapter 3.1 --- Materials and methods --- p.33 / Chapter a) --- Surgery and animal maintenance --- p.33 / Chapter b) --- Dosing and sample collection --- p.33 / Chapter c) --- Pharmacokinetics analysis of tea catechins --- p.35 / Chapter 3.2 --- Results --- p.36 / Chapter 3.3 --- Discussion --- p.50 / Chapter Chapter 4 --- Pharmacokinetics of tea catechins following administration of different doses of individual catechins --- p.52 / Chapter 4.1 --- Materials and methods --- p.53 / Chapter a) --- Chemicals and reagents --- p.53 / Chapter b) --- Pharmacokinetic study of tea catechins and the HPLC analysis --- p.53 / Chapter c) --- Pharmacokinetic analysis of tea catechins --- p.54 / Chapter 4.2 --- Results --- p.55 / Chapter 4.3 --- Discussion --- p.67 / Chapter Chapter 5 --- Plasma protein binding of tea catechins --- p.69 / Chapter 5.1 --- Introduction --- p.69 / Chapter 5.2 --- Materials and methods --- p.72 / Chapter a) --- Ultrafiltration --- p.72 / Chapter b) --- Preparation of stock solution --- p.73 / Chapter c) --- Determination of nonspecific binding of the catechins --- p.73 / Chapter d) --- Determination of ultrafiltration conditions --- p.74 / Chapter e) --- In vitro plasma protein binding assay --- p.74 / Chapter f) --- Statistical analysis --- p.75 / Chapter 5.3 --- Results --- p.76 / Chapter a) --- Nonspecific binding in ultrafiltration --- p.76 / Chapter b) --- Protein binding of the catechins --- p.76 / Chapter c) --- Statistical analysis --- p.76 / Chapter 5.4 --- Discussion --- p.80 / Chapter Chapter 6 --- Partition of tea catechins in red blood cell --- p.82 / Chapter 6.1 --- Materials and methods --- p.83 / Chapter a) --- Prepare of stock solution --- p.83 / Chapter b) --- In-vitro erythrocyte partition --- p.83 / Chapter c) --- Data Analysis --- p.83 / Chapter 6.2 --- Results --- p.85 / Chapter a) --- Selection of experiment conditions --- p.85 / Chapter b) --- Partition of catechins to RBC --- p.85 / Chapter 6.3 --- Discussion --- p.87 / Chapter Chapter 7 --- Comparison of pharmacokinetics of tea catechins in mixture form versus pure compound --- p.89 / Chapter Chapter 8 --- Conclusion --- p.95 / References --- p.98
2

Study on the intestinal absorption mechanism of green tea catechins and hawthorn flavonoids using caco-2 cell monolayer model.

January 2003 (has links)
Zhang Li. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 148-159). / Abstracts in English and Chinese. / Acknowledgements --- p.I / Abstract --- p.II / Abstract (in Chinese) --- p.IV / Publications --- p.V / List of Abbreviations --- p.VI / List of Tables --- p.VII / List of Figures --- p.VIII / Table of Contents --- p.XIII / Chapter Chapter One. --- Introduction --- p.1 / Chapter 1.1 --- Flavonoids --- p.1 / Chapter 1.2 --- Tea --- p.4 / Chapter 1.2.1 --- Composition of green tea catechins (GTC) --- p.4 / Chapter 1.2.2 --- Pharmacological activity --- p.6 / Chapter 1.2.2.1 --- Anticarcinogenic activity --- p.6 / Chapter 1.2.2.2 --- Antioxidative activity --- p.7 / Chapter 1.2.2.3 --- Radical scavenge --- p.7 / Chapter 1.2.2.4 --- Cardiovascular activity --- p.8 / Chapter 1.2.3 --- Pharmacokinetics of GTC --- p.8 / Chapter 1.2.3.1 --- Absorption --- p.10 / Chapter 1.2.3.2 --- Distribution --- p.11 / Chapter 1.2.3.3 --- Elimination --- p.11 / Chapter 1.2.3.4 --- Metabolism --- p.12 / Chapter 1.2.3.4.1 --- Metabolism in the small intestine --- p.12 / Chapter 1.2.3.4.2 --- Metabolism in the liver --- p.13 / Chapter 1.2.3.5 --- Summary of the pharmacokinetics of GTC --- p.13 / Chapter 1.3 --- Hawthorn --- p.14 / Chapter 1.3.1 --- Composition of hawthorn --- p.14 / Chapter 1.3.2 --- Pharmacological activity --- p.16 / Chapter 1.3.2.1 --- Inotonic activity --- p.16 / Chapter 1.3.2.2 --- Antiarrhythmic activity --- p.17 / Chapter 1.3.2.3 --- Hypolipidemic activity --- p.17 / Chapter 1.3.2.4 --- Antihypertensive activity --- p.18 / Chapter 1.3.2.5 --- Antioxidative activity --- p.18 / Chapter 1.3.3 --- Pharmacokinetics of HF --- p.18 / Chapter 1.3.3.1 --- Absorption --- p.19 / Chapter 1.3.3.2 --- Distribution and elimination --- p.21 / Chapter 1.3.3.3 --- Summary of pharmacokinetic of HF --- p.22 / Chapter 1.4 --- Mechanisms of intestinal absorption --- p.22 / Chapter 1.4.1 --- Passive transcellular transport --- p.23 / Chapter 1.4.2 --- Paracellular transport --- p.23 / Chapter 1.4.3 --- Carrier-mediated transport --- p.23 / Chapter 1.5 --- ABC transporters --- p.24 / Chapter 1.5.1 --- Cellular location and tissue distribution --- p.25 / Chapter 1.5.2 --- Substrates and inhibitors of ABC transporters --- p.26 / Chapter 1.6 --- Oral absorption models --- p.31 / Chapter 1.6.1 --- Ussing chamber --- p.31 / Chapter 1.6.2 --- In situ intestinal perfusion model --- p.33 / Chapter 1.6.3 --- Cell culture model --- p.34 / Chapter 1.7 --- Aims of the study --- p.36 / Chapter Chapter Two. --- Transport mechanism of green tea catechins --- p.37 / Chapter 2.1 --- Introduction --- p.37 / Chapter 2.2 --- Materials --- p.38 / Chapter 2.2.1 --- Chemicals --- p.38 / Chapter 2.2.2 --- Materials for cell culture --- p.38 / Chapter 2.2.3 --- Instruments --- p.39 / Chapter 2.3 --- Methods --- p.39 / Chapter 2.3.1 --- Analytical methods --- p.39 / Chapter 2.3.1.1 --- Analytical methods for validation of Caco-2 model --- p.39 / Chapter 2.3.1.1.1 --- Fluorescence analysis of lucifer yellow --- p.39 / Chapter 2.3.1.1.2 --- HPLC analysis of propranolol --- p.39 / Chapter 2.3.1.1.3 --- HPLC analysis of verapamil --- p.40 / Chapter 2.3.1.1.4 --- HPLC analysis of quinidine --- p.40 / Chapter 2.3.1.2 --- Analytical methods for samples contained GTC --- p.41 / Chapter 2.3.1.2.1 --- HPLC analysis for each GTC --- p.41 / Chapter 2.3.1.2.2 --- Preparation of calibration curves for each GTC --- p.42 / Chapter 2.3.1.2.3 --- HPLC/MS analysis of samples containing mixtures of four GTC --- p.42 / Chapter 2.3.1.2.4 --- Preparation of calibration curves for samples containing GTC mixture --- p.43 / Chapter 2.3.1.2.5 --- Validation of the HPLC methods --- p.43 / Chapter 2.3.1.3 --- Identification of metabolites with HPLC/MS --- p.44 / Chapter 2.3.2 --- Determination of stability profile of GTC in phosphate buffer --- p.44 / Chapter 2.3.3 --- Cell culture --- p.45 / Chapter 2.3.4 --- Validation of Caco-2 cell monolayer model --- p.46 / Chapter 2.3.4.1 --- Integrity of Caco-2 cell monolayer at pH 6.0 --- p.46 / Chapter 2.3.4.2 --- Permeability of paracellular and transcellular markers at pH 6.0 --- p.46 / Chapter 2.3.4.3 --- Validation of the existence of P-glycoprotein (P-gp) transporterin Caco-2 monolayer model --- p.46 / Chapter 2.3.4.4 --- Cytotoxicity test --- p.47 / Chapter 2.3.5 --- Transport study of GTC using Caco-2 cell monolayer model --- p.48 / Chapter 2.3.5.1 --- Bi-directional transport experiment --- p.48 / Chapter 2.3.5.2 --- Preparation of different dosing formulations of GTC --- p.48 / Chapter 2.3.5.2.1 --- Preparation of individual pure GTC solutions --- p.48 / Chapter 2.3.5.2.2 --- Preparation of cocktail 1 solution --- p.49 / Chapter 2.3.5.2.3 --- Preparation of green tea extract solution --- p.49 / Chapter 2.3.5.2.4 --- Preparation of cocktail 2 solution --- p.50 / Chapter 2.3.5.3 --- Sample treatment --- p.50 / Chapter 2.3.5.3.1 --- Samples for direct analysis --- p.50 / Chapter 2.3.5.3.2 --- Samples for enzymatic hydrolysis treatment --- p.51 / Chapter 2.3.5.4 --- Further investigation of the transport mechanism of GTC --- p.51 / Chapter 2.3.5.4.1 --- Inhibition transport of EC and EGC --- p.51 / Chapter 2.3.5.4.2 --- Transport mechanism of metabolites of EC and EGC --- p.52 / Chapter 2.3.5.4.3 --- Metabolic competition between EGC and the other GTC --- p.52 / Chapter 2.3.6 --- Calculation --- p.53 / Chapter 2.3.7 --- Data analysis --- p.54 / Chapter 2.4 --- Results --- p.55 / Chapter 2.4.1 --- Validation of the HPLC methods --- p.55 / Chapter 2.4.2 --- Stability of the GTC --- p.55 / Chapter 2.4.3 --- Extract of green tea leaves --- p.55 / Chapter 2.4.4 --- Validation of Caco-2 model --- p.59 / Chapter 2.4.4.1 --- Integrity of Caco-2 cell monolayer --- p.59 / Chapter 2.4.4.2 --- Permeability of paracellular and transcellular markers at pH 6.0 --- p.59 / Chapter 2.4.4.3 --- Validation of P-glycoprotein --- p.60 / Chapter 2.4.4.4 --- Cytotoxicity test --- p.61 / Chapter 2.4.5 --- Transport study of GTC --- p.63 / Chapter 2.4.5.1 --- Bi-directional transport of individual pure GTC --- p.63 / Chapter 2.4.5.2 --- Bi-directional transport of GTC in different dosing formulations --- p.66 / Chapter 2.4.5.2.1 --- Absorption transport profile of GTC in different dosing formulations --- p.66 / Chapter 2.4.5.2.2 --- Secretion transport profile of GTC in different dosing formulations --- p.66 / Chapter 2.4.5.3 --- Identification of metabolites of each GTC formed during the transport in Caco-2 cell model --- p.71 / Chapter 2.4.6 --- Further investigation of the transport mechanism of GTC --- p.82 / Chapter 2.4.6.1 --- Inhibition transport of EC and EGC --- p.82 / Chapter 2.4.6.2 --- Transport mechanism of metabolites of EC and EGC --- p.82 / Chapter 2.4.6.3 --- Metabolic competition between EGC and the other GTC --- p.85 / Chapter 2.4.6.4 --- Contribution of GTC on the metabolism of EGC --- p.89 / Chapter 2.5 --- Discussion --- p.92 / Chapter 2.5.1 --- Stability of the four GTC --- p.92 / Chapter 2.5.2 --- Validation of Caco-2 cell model --- p.92 / Chapter 2.5.3 --- Bi-directional transport of GTC --- p.93 / Chapter 2.5.4 --- Structure related efflux --- p.97 / Chapter 2.5.5 --- Metabolism of GTC --- p.98 / Chapter 2.5.6 --- Relationship between metabolism and efflux transport of GTC --- p.99 / Chapter 2.5.7 --- Bi-directional transport of GTC in different dosing formulations …… --- p.100 / Chapter 2.5.7.1 --- Absorption transport profile of different dosing formulations --- p.100 / Chapter 2.5.7.2 --- Secretion transport profile of different dosing formulations --- p.101 / Chapter 2.6 --- Conclusion --- p.105 / Chapter Chapter Three. --- Transport mechanism of hawthorn flavonoids --- p.106 / Chapter 3.1 --- Introduction --- p.106 / Chapter 3.2 --- Materials --- p.107 / Chapter 3.2.1 --- Chemicals --- p.107 / Chapter 3.2.2 --- Materials for cell culture --- p.108 / Chapter 3.2.3 --- Instruments --- p.108 / Chapter 3.3 --- Methods --- p.109 / Chapter 3.3.1 --- Analytical methods for HF --- p.109 / Chapter 3.3.1.1 --- Analytical methods of individual pure compound of HF --- p.109 / Chapter 3.3.1.1.1 --- HPLC analysis of HP and IQ --- p.109 / Chapter 3.3.1.1.2 --- HPLC analysis of EC --- p.109 / Chapter 3.3.1.2 --- Preparation of calibration curves for individual pure HF --- p.109 / Chapter 3.3.1.3 --- HPLC/MS analysis of three HF in mixture --- p.110 / Chapter 3.3.1.4 --- Preparation of the calibration curves of three HF in mixture --- p.111 / Chapter 3.3.1.5 --- Validation of HPLC methods --- p.111 / Chapter 3.3.2 --- Analytical methods for identification of metabolites with HPLC/MS --- p.111 / Chapter 3.3.3 --- Cell culture --- p.112 / Chapter 3.3.4 --- Cytotoxicity test --- p.113 / Chapter 3.3.5 --- Transport studies of HF using Caco-2 monolayer model --- p.113 / Chapter 3.3.5.1 --- Bi-directional transport experiment --- p.113 / Chapter 3.3.5.2 --- Preparation of loading solutions in different dosing formulations of HF for Caco-2 cell model --- p.114 / Chapter 3.3.5.2.1 --- Preparation of individual pure HF solutions --- p.114 / Chapter 3.3.5.2.2 --- Preparation of cocktail 1 solution --- p.114 / Chapter 3.3.5.2.3 --- Preparation of hawthorn extract solution --- p.114 / Chapter 3.3.5.2.4 --- Preparation of cocktail 2 solution --- p.114 / Chapter 3.3.5.3 --- Sample treatment --- p.115 / Chapter 3.3.5.4 --- Further study of the transport mechanism of HF --- p.115 / Chapter 3.3.5.4.1 --- "Inhibition transport of EC, IQ, and HP" --- p.115 / Chapter 3.3.5.4.2 --- "Transport mechanisms of the metabolites of EC, HP, IQ" --- p.116 / Chapter 3.3.6 --- Calculation --- p.116 / Chapter 3.3.7 --- Data analysis --- p.117 / Chapter 3.4 --- Results --- p.118 / Chapter 3.4.1 --- Validation of the HPLC methods --- p.118 / Chapter 3.4.2 --- Cytotoxicity test --- p.118 / Chapter 3.4.3 --- Transport study of HF --- p.122 / Chapter 3.4.3.1 --- Bi-directional transport of individual pure HF --- p.122 / Chapter 3.4.3.2 --- Bi-directional transport of the HF in different formulations --- p.123 / Chapter 3.4.3.2.1 --- Absorption transport of different formulations of HF --- p.123 / Chapter 3.4.3.2.2 --- Secretion transport of different dosing forms --- p.123 / Chapter 3.4.3.3 --- Identification of metabolites of each HF formed during their transport in Caco-2 model --- p.126 / Chapter 3.4.4 --- Further study on the transport mechanism --- p.136 / Chapter 3.4.4.1 --- "Inhibition transport of EC, HP, IQ" --- p.136 / Chapter 3.4.4.2 --- Transport mechanism of metabolites of HF --- p.136 / Chapter 3.4.4.3 --- Transport profiles of HF metabolites upon the loading of different dosing formulations of HF --- p.138 / Chapter 3.5 --- Discussion --- p.140 / Chapter 3.5.1 --- Bi-directional transport of each HF --- p.140 / Chapter 3.5.2 --- Bi-directional transport of HF in different formulations --- p.141 / Chapter 3.6 --- Conclusion --- p.142 / Chapter Chapter Four. --- Limitations of the current study --- p.143 / Chapter Chapter Five. --- Overall conclusions --- p.146 / References --- p.148 / Appendices --- p.160

Page generated in 0.0704 seconds