Spelling suggestions: "subject:"semiochemistry"" "subject:"astrochemistry""
1 |
Pharmacological studies of Ilex latifolia--: hypoglycemic and hypolipidemic effects and lack of acute toxicity of Ilex latifolia extract and its saponin-enriched fraction.January 2000 (has links)
by Fok Ho Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 114-120). / Abstracts in English and Chinese. / Acknowledgements --- p.ii / Abstract --- p.iii / 槪論 --- p.v / List of Abbreviations --- p.vi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Toxicological studies on the effect of Ilex latifolia extract and its saponin-enriched Fraction --- p.19 / Chapter Chapter 3 --- Hypoglycemic effect of Ilex latifolia extract and its saponin-enriched fraction --- p.51 / Chapter Chapter 4 --- Hypolipidemic effect of Ilex latifolia extract and its saponin-enriched fraction --- p.78 / Chapter Chapter 5 --- Conclusion --- p.109 / References --- p.114
|
2 |
Pharmacokinetics of tea catechins in the rat.January 2001 (has links)
Chen Yu. / Thesis submitted in: November 2001. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 98-112). / Abstracts in English and Chinese. / Acknowledgements --- p.I / List of publications --- p.II / Abstract --- p.III / Abstract (Chinese) --- p.IV / Abbreviations --- p.V / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Tea --- p.1 / Chapter 1.2 --- Green tea --- p.3 / Chapter a) --- Chemical composition of green tea --- p.3 / Chapter b) --- Pharmacological activities of green tea polyphenols --- p.6 / Chapter c) --- Pharmacokinetics of green tea polyphenols --- p.10 / Chapter 1.3 --- Objective --- p.14 / Chapter Chapter 2 --- Validation of analysis method for tea catechins --- p.15 / Chapter 2.1 --- Materials and methods --- p.16 / Chapter a) --- Preparation of a catechin-mixture from tea --- p.16 / Chapter b) --- Preparation of stock solutions --- p.18 / Chapter c) --- Preparation of biofluid samples --- p.18 / Chapter d) --- HPLC analysis of tea catechins --- p.19 / Chapter 2.2 --- Results --- p.21 / Chapter a) --- Catechin-mixture (tea extracts) --- p.21 / Chapter b) --- "Extraction from plasma, urine and feces" --- p.21 / Chapter c) --- HPLC analysis of biofluid samples --- p.23 / Chapter 2.4 --- Discussion --- p.26 / Chapter Chapter 3 --- Pharmacokinetics of tea catechins following administration of different doses of the catechin-mixture --- p.32 / Chapter 3.1 --- Materials and methods --- p.33 / Chapter a) --- Surgery and animal maintenance --- p.33 / Chapter b) --- Dosing and sample collection --- p.33 / Chapter c) --- Pharmacokinetics analysis of tea catechins --- p.35 / Chapter 3.2 --- Results --- p.36 / Chapter 3.3 --- Discussion --- p.50 / Chapter Chapter 4 --- Pharmacokinetics of tea catechins following administration of different doses of individual catechins --- p.52 / Chapter 4.1 --- Materials and methods --- p.53 / Chapter a) --- Chemicals and reagents --- p.53 / Chapter b) --- Pharmacokinetic study of tea catechins and the HPLC analysis --- p.53 / Chapter c) --- Pharmacokinetic analysis of tea catechins --- p.54 / Chapter 4.2 --- Results --- p.55 / Chapter 4.3 --- Discussion --- p.67 / Chapter Chapter 5 --- Plasma protein binding of tea catechins --- p.69 / Chapter 5.1 --- Introduction --- p.69 / Chapter 5.2 --- Materials and methods --- p.72 / Chapter a) --- Ultrafiltration --- p.72 / Chapter b) --- Preparation of stock solution --- p.73 / Chapter c) --- Determination of nonspecific binding of the catechins --- p.73 / Chapter d) --- Determination of ultrafiltration conditions --- p.74 / Chapter e) --- In vitro plasma protein binding assay --- p.74 / Chapter f) --- Statistical analysis --- p.75 / Chapter 5.3 --- Results --- p.76 / Chapter a) --- Nonspecific binding in ultrafiltration --- p.76 / Chapter b) --- Protein binding of the catechins --- p.76 / Chapter c) --- Statistical analysis --- p.76 / Chapter 5.4 --- Discussion --- p.80 / Chapter Chapter 6 --- Partition of tea catechins in red blood cell --- p.82 / Chapter 6.1 --- Materials and methods --- p.83 / Chapter a) --- Prepare of stock solution --- p.83 / Chapter b) --- In-vitro erythrocyte partition --- p.83 / Chapter c) --- Data Analysis --- p.83 / Chapter 6.2 --- Results --- p.85 / Chapter a) --- Selection of experiment conditions --- p.85 / Chapter b) --- Partition of catechins to RBC --- p.85 / Chapter 6.3 --- Discussion --- p.87 / Chapter Chapter 7 --- Comparison of pharmacokinetics of tea catechins in mixture form versus pure compound --- p.89 / Chapter Chapter 8 --- Conclusion --- p.95 / References --- p.98
|
3 |
Tea catechins: epimerization, antioxidant activity and effect on body fatness in rats. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 2004 (has links)
Xu Jinze. / "August 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 165-182). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
4 |
The study of feasibility of green tea treatment on fetus: from chemistry to treatment. / CUHK electronic theses & dissertations collectionJanuary 2005 (has links)
Hypoxia and reperfusion can result in many pathological complications in the fetus including retinopathy, ischemic encephalopathy and even stillbirth. The adverse effects are due to excess production of free radicals that attack vital bio-molecules such as DNA and enzymes. Antioxidant treatment may be a way to alleviate oxidative stress. Green tea is a source of antioxidants. It contains polyphenols mainly catechins, that possess high reducing power and low toxicity. Major catechin compounds in green tea are (+)-catechin (C), (-)-epicatechin (EC, (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG). Accordingly, catechins may be ideal agents for antioxidant treatment of the fetus exposed to hypoxia during pregnancy. / In the animal experiments, rat mothers, at the 15.5th gestation day, were intragastrically administrated a single dose of green tea extract. The pharmacokinetic profiles of catechins in maternal plasma, whole embryos and embryonic organs were investigated. The catechins GC, ECG, C, EC, were found to exhibit non-linear capacity limited pharmacokinetic behaviour implying their metabolism or absorption was saturated. Catechin gallates, EGCG and ECG, appeared to exhibit enterohepatic re-circulation behaviour. Peak time was about 1 hour for both groups of catechins; the half life of the catechin group was about 1 hour while that of EGCG and ECG was about 3.7 hours. EC, EGC and EGCG were the dominant compounds present in plasma. All catechins exhibited a consecutive one-compartment model in the embryo, where EGCG, ECG, EGC and EC were dominant compounds and ECG had the highest penetrability. (Abstract shortened by UMI.) / In this study, pregnant rat dams were fed green tea extract in an attempt to raise catechin levels in the rat embryo in order to scavenge free radicals. To test this hypothetical application, we first established analytical methods to evaluate oxidative stress and catechins levels of the fetus in vivo. The methodologies included assaying F2-isoprostanes in cord blood and determining catechin levels in biological fluids and tissues. We further utilized these new sensitive analytical methods to investigate the pharmacokinetics of the catechins in maternal rat plasma, whole embryos and embryonic organs. Since no data has been previously reported on the toxic effects of catechins on embryos, we also tested the toxic effects of various concentrations of catechins on the developing embryonic features in embryo culture. / Chu Kai On. / "April 2005." / Advisers: Michael Scott Rogers; Chi Pui Pang. / Source: Dissertation Abstracts International, Volume: 67-01, Section: B, page: 0244. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 208-241). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
|
5 |
Antioxidative and vascular effects of kudingcha (Ligustrum purpurascens).January 2000 (has links)
Wong Yuen Fan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 134-150). / Abstracts in English and Chinese. / ACKNOWLEDGMENTS --- p.i / ABSTRACT --- p.ii / LIST OF ABBREAIATIONS --- p.vii / TABLE OF CONTENTS --- p.ix / Chapter Chapter 1 --- General introduction / Chapter 1.1 --- History of Kudingcha --- p.1 / Chapter 1.2 --- Classification of Kudingcha --- p.1 / Chapter 1.3 --- Composition of Kudingcha --- p.3 / Chapter 1.4 --- Introduction to phenylethanoid glycosides --- p.4 / Chapter 1.4.1 --- Isolation and purification of phenylethanoid glycosides --- p.4 / Chapter 1.4.2 --- Taxonomy of phenylethanoid glycosides --- p.5 / Chapter 1.4.3 --- Structure of phenylethanoid glycosides --- p.5 / Chapter 1.4.4 --- Biosynthesis of phenylethanoid glycosides --- p.6 / Chapter 1.4.5 --- Pharmacological effects of phenylethanoid glycosides --- p.9 / Chapter 1.4.5.1 --- Anticarcinogenic activity --- p.10 / Chapter 1.4.5.2 --- Inhibitory activity of protein kinase C --- p.10 / Chapter 1.4.5.3 --- Immunosuppressive activity --- p.11 / Chapter 1.4.5.4 --- DNA repairing activity --- p.11 / Chapter 1.4.5.5 --- Antibacterial and antiviral activities --- p.11 / Chapter 1.4.5.6 --- Antiinflammatory and antinociceptive activities --- p.12 / Chapter 1.4.5.7 --- Hepatoprotective activity --- p.12 / Chapter 1.4.5.8 --- Inhibitory activity of xanthine oxidase --- p.13 / Chapter 1.4.5.9 --- Antioxidative and scavenging activities --- p.13 / Chapter Chapter 2 --- Isolation and purification of phenylethaonid glycosides in Kudingcha / Chapter 2.1 --- Introduction --- p.15 / Chapter 2.2 --- Objectives --- p.16 / Chapter 2.3 --- Materials and Methods --- p.17 / Chapter 2.3.1 --- Extraction and isolation --- p.17 / Chapter 2.3.2 --- High performance liquid chromatograph (HPLC)analysis --- p.19 / Chapter 2.3.2.1 --- "Acteoside, ligupurpuroside A and osmanthuside B" --- p.19 / Chapter 2.3.2.2 --- cis-Ligupurpuroside B and trans-ligupurpuroside B --- p.19 / Chapter 2.3.3 --- Isolation and purification of isoacteoside --- p.19 / Chapter 2.4 --- Results --- p.24 / Chapter 2.4.1 --- A cteoside --- p.24 / Chapter 2.4.2 --- Osmanthuside B --- p.24 / Chapter 2.4.3 --- Ligupurpuroside A --- p.24 / Chapter 2.4.4 --- trans-Ligupurpuroside B --- p.25 / Chapter 2.4.5 --- cis-Ligupurpuroside B --- p.25 / Chapter 2.4.6 --- Isoacteoside --- p.25 / Chapter 2.4.6.1 --- Thermal stability --- p.25 / Chapter 2.5 --- Discussions --- p.27 / Chapter 2.5.1 --- Acteoside --- p.27 / Chapter 2.5.2 --- Osmanthuside B --- p.27 / Chapter 2.5.3 --- Ligupurpuroside A --- p.28 / Chapter 2.5.4 --- trans-Ligupurpuroside B --- p.29 / Chapter 2.5.5 --- cis-Ligupurpuroside B --- p.29 / Chapter 2.5.6 --- Isoacteoside --- p.30 / Chapter Chapter 3 --- Inhibitory effect of phenylethanoid glycosides isolated from Kudingcha on Cu2+-mediated LDL oxidation in vitro / Chapter 3.1 --- Introduction --- p.36 / Chapter 3.2 --- Mechanisms of lipoprotein oxidation in vivo --- p.36 / Chapter 3.2.1 --- Oxidants underlying LDL oxidation --- p.36 / Chapter 3.2.2 --- Oxidative modification of LDL --- p.37 / Chapter 3.2.3 --- Role of oxidatively modified LDL in atherogenesis --- p.38 / Chapter 3.2.4 --- Antioxidants and atherosclerotic heart disease --- p.40 / Chapter 3.2.5 --- Measuring the thiobarbituric acid-reactive substances (TBARS) formation as an index to monitor LDL oxidation --- p.41 / Chapter 3.2.6 --- Effect of flavonoids on Cu2+-mediated human LDL oxidation --- p.41 / Chapter 3.3 --- Objectives --- p.43 / Chapter 3.4 --- Materials and methods --- p.44 / Chapter 3.4.1 --- LDL isolation --- p.44 / Chapter 3.4.2 --- LDL oxidation --- p.44 / Chapter 3.4.3 --- Thiobarbituric acid-reactive substances (TBARS) assay --- p.45 / Chapter 3.4.4 --- Interactions of phenylethanoid glycosides isolated from Kudingcha with Cu2+ in human LDL oxidation --- p.45 / Chapter 3.4.5 --- Statistics --- p.46 / Chapter 3.5 --- Results --- p.47 / Chapter 3.5.1 --- Protective effect of the major phenylethanoid glycosides isolated from Kudingcha on LDL oxidation --- p.47 / Chapter 3.5.2 --- Varying protective effect of individual major Kudingcha phenylethanoid glycosides --- p.47 / Chapter 3.5.3 --- Interactions of Kudingcha phenylethanoid glycosides with Cu2+in human LDL oxidation --- p.51 / Chapter 3.5 --- Discussions --- p.55 / Chapter Chapter 4 --- Inhibitory effects of Kudingcha phenylethanoid glycosides on a-tocopherol oxidation in vitro / Chapter 4.1 --- Introduction --- p.58 / Chapter 4.1.1 --- LDL oxidation and atherosclerosis --- p.58 / Chapter 4.1.2 --- Role of vitamin E in LDL lipid peroxidation --- p.59 / Chapter 4.1.3 --- Interaction of tocopherol interactions with other antioxidants and synergists --- p.61 / Chapter 4.2 --- Objectives --- p.62 / Chapter 4.3 --- Materials and Methods --- p.63 / Chapter 4.3.1 --- Depletion of a-tocopherol in LDL --- p.63 / Chapter 4.3.2 --- Regeneration of a-tocopherol in LDL --- p.63 / Chapter 4.3.3 --- HPLC analysis of a-tocopherol in LDL --- p.64 / Chapter 4.3.4 --- Statistics --- p.64 / Chapter 4.4 --- Results --- p.66 / Chapter 4.4.1 --- Protective effects of Kudingcha phenylethanoid glycosides on a-tocopherol depletion --- p.66 / Chapter 4.4.2 --- Regeneration of a-tocopherol by acteoside --- p.70 / Chapter 4.5 --- Discussions --- p.72 / Chapter Chapter 5 --- Relaxing effects of Kudingcha extract and purified acteoside in rat aortic rings / Chapter 5.1 --- Introduction --- p.75 / Chapter 5.1.1 --- Mechanisms of calcium mobilization --- p.76 / Chapter 5.1.1.1 --- Voltage-dependent calcium channel --- p.76 / Chapter 5.1.1.2 --- Thromboxane A2 Receptor-mediated calcium channel --- p.77 / Chapter 5.1.1.3 --- Protein kinase C in signal transudation --- p.77 / Chapter 5.1.2 --- Contractile proteins and regulation of contraction of vascular smooth muscle --- p.78 / Chapter 5.2 --- Objectives --- p.82 / Chapter 5.3 --- Materials and Methods --- p.83 / Chapter 5.3.1 --- Arterial ring preparation --- p.83 / Chapter 5.3.2 --- Vascular action of Kudingcha extract and acteoside --- p.85 / Chapter 5.3.2.1 --- Relaxant responses of Kudingcha extract and acteoside on U46619 -induced contraction --- p.85 / Chapter 5.3.2.2 --- Relaxant responses of Kudingcha extract and acteoside on high K+ and CaCl2-induced contraction --- p.85 / Chapter 5.3.2.3 --- Relaxant responses of Kudingcha extract and acteoside on protein kinase C- mediated contraction --- p.86 / Chapter 5.3.2.4 --- Effect of acteoside on acetylcholine-induced relaxation --- p.87 / Chapter 5.3.3 --- Statistics --- p.87 / Chapter 5.4 --- Results --- p.88 / Chapter 5.4.1 --- Effects of Kudingcha extract and acteoside on U46619-induced contraction --- p.88 / Chapter 5.4.2 --- Effects of Kudingcha extract and acteoside on high K+-induced contraction --- p.94 / Chapter 5.4.3 --- Effect of Kudingcha extract and acteoside on protein kinase C-mediated contraction --- p.98 / Chapter 5.4.4 --- Effect of acteoside on acetylcholine-induced relaxation --- p.100 / Chapter 5.5 --- Discussions --- p.103 / Chapter Chapter 6 --- Effect of Kudingcha on lipid contents of hamsters and New Zealand Rabbits / Chapter 6.1 --- Introduction --- p.106 / Chapter 6.1.1 --- Factors related to CHD --- p.106 / Chapter 6.1.2 --- Animal model --- p.107 / Chapter 6.2 --- Objectives --- p.108 / Chapter 6.3 --- Materials and Methods --- p.109 / Chapter 6.3.1 --- Rabbit --- p.109 / Chapter 6.3.1.1 --- Measurement of atheroma formation --- p.112 / Chapter 6.3.2 --- Hamster --- p.114 / Chapter 6.3.3 --- Serum lipid determinations --- p.116 / Chapter 6.3.4 --- Determination of hepatic cholesterol content --- p.116 / Chapter 6.3.5 --- Statistics --- p.117 / Chapter 6.4 --- Results --- p.119 / Chapter 6.4.1 --- Growth and Food intake --- p.119 / Chapter 6.4.2 --- "Effect of Kudingcha supplementation on Serum TG, TC and HDL-C" --- p.119 / Chapter 6.4.3 --- Effect of Kudingcha supplementation on hepatic cholesterol contents --- p.124 / Chapter 6.4.4 --- Effect of Kudingcha supplementation on atheroma formation --- p.124 / Chapter 6.5 --- Discussions --- p.129 / Chapter Chapter 7 --- Conclusions --- p.131 / References --- p.134
|
6 |
Antioxidative activities of green tea catechins (Jasmine tea). / Antioxidative activities of green tea catechins / CUHK electronic theses & dissertations collectionJanuary 1999 (has links)
Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (p. 218-235). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
Page generated in 0.0523 seconds