• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • Tagged with
  • 30
  • 30
  • 17
  • 12
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Discourse Modeling with Abstract Categorial Grammars / Modélisation du Discours avec les Grammaires Catégorielles Abstraites

Maskharashvili, Aleksandre 01 December 2016 (has links)
Ce mémoire de thèse traite de la modélisation du discours dans le cadre grammatical des Grammaires Catégorielles Abstraites (Abstract Categorial Grammars, ACGs). Les ACGs offrent un cadre unifié pour la modélisation de la syntaxe et de la sémantique. Nous nous intéressons en particulier aux formalismes discursifs qui utilisent une approche grammaticale pour rendre compte des régularités des structures discursives. Nous proposons en particulier un encodage à l'aide des ACGs de deux formalismes discursifs : G-TAG et D-STAG. Ces encodages permettent d'éclairer le problème des connecteurs discursifs médiaux que les formalismes s'appuyant sur TAG ne traitent pas, du moins pas par un mécanisme grammatical. En effet, pour prendre en compte ces connecteurs, G-TAG et D-STAG utilisent une étape extra-grammaticale. Notre encodage offre au contraire une approche purement grammaticale de la prise en compte de ces connecteurs discursifs. Ces encodages se font à l'aide d'ACGs de second ordre. Les grammaires de cette classe ont des propriétés de réversibilité qui nous permettent d'utiliser les mêmes algorithmes polynômiaux aussi bien pour l'analyse discursive que pour la génération de discours. / This dissertation addresses the questions of discourse modeling within a grammatical framework called Abstract Categorial Grammars (ACGs). ACGs provide a unified framework for both syntax and semantics. We focus on the discourse formalisms that make use of a grammatical approach to capture the discourse structure regularities. In particular, we propose ACG encodings of two discourse formalisms: G-TAG and D-STAG. These ACG encodings shed light on the problem of clause-medial connectives that the G-TAG and D-STAG grammars leave out of account. Both G-TAG and D-STAG make use of an extra-grammatical processing to deal with discourse connectives that appear at clause-medial positions. In contrast, the ACG encodings of G-TAG and D-STAG offer a purely grammatical approach to clause-medial connectives. Each of these ACG encodings are second-order. Grammars of this class have reversibility properties that allow us to use the same polynomial algorithmes both for the discourse parsing and generation tasks.
22

Grammatical Relations And Word Order In Turkish Sign Language (tid)

Sevinc, Ayca Muge 01 April 2006 (has links) (PDF)
This thesis aims at investigating the grammatical relations in Turkish Sign Language (TiD). For this aim, word order, nominal morphology, and agreement morphology of verbs are examined. TiD lacks morphological case, but it has a very rich pronominal system like other sign languages. Verbs are classified according to their morphosyntactic features. With this classification, we can observe the effect of word order and agreement morphology on the grammatical relations. Combinatory Categorial Grammar as a lexicalized grammar encodes word order, morphological case, and agreement features in the lexicon. Hence, it has the tools for testing any lexicalized basic word order hypothesis for a language based on the gapping data. Gapping data based on grammatical judgments of native signers indicate that TiD is a verb final language. Syntactic ergativity seems to be prevailing in coordination of a transitive sentence and an intransitive sentence where the single argument of the intransitive clause or one of the arguments of the transitive clause is missing. TiD also shows a tendency for ergativity in lexical properties such as agreement and pro-drop.
23

Grammar And Information: A Study Of Turkish Indefinites

Ozge, Umut 01 September 2010 (has links) (PDF)
Turkish, along with many other languages, marks its direct objects in two distinct ways: overt accusative marking (Acc) versus no marking (&empty / ). The research on the grammar and interpretation of Turkish inde
24

A study of the use of natural language processing for conversational agents

Wilkens, Rodrigo Souza January 2016 (has links)
linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional. / Language is a mark of humanity and conscience, with the conversation (or dialogue) as one of the most fundamental manners of communication that we learn as children. Therefore one way to make a computer more attractive for interaction with users is through the use of natural language. Among the systems with some degree of language capabilities developed, the Eliza chatterbot is probably the first with a focus on dialogue. In order to make the interaction more interesting and useful to the user there are other approaches besides chatterbots, like conversational agents. These agents generally have, to some degree, properties like: a body (with cognitive states, including beliefs, desires and intentions or objectives); an interactive incorporation in the real or virtual world (including perception of events, communication, ability to manipulate the world and communicate with others); and behavior similar to a human (including affective abilities). This type of agents has been called by several terms, including animated agents or embedded conversational agents (ECA). A dialogue system has six basic components. (1) The speech recognition component is responsible for translating the user’s speech into text. (2) The Natural Language Understanding component produces a semantic representation suitable for dialogues, usually using grammars and ontologies. (3) The Task Manager chooses the concepts to be expressed to the user. (4) The Natural Language Generation component defines how to express these concepts in words. (5) The dialog manager controls the structure of the dialogue. (6) The synthesizer is responsible for translating the agents answer into speech. However, there is no consensus about the necessary resources for developing conversational agents and the difficulties involved (especially in resource-poor languages). This work focuses on the influence of natural language components (dialogue understander and manager) and analyses, in particular the use of parsing systems as part of developing conversational agents with more flexible language capabilities. This work analyses what kind of parsing resources contributes to conversational agents and discusses how to develop them targeting Portuguese, which is a resource-poor language. To do so we analyze approaches to the understanding of natural language, and identify parsing approaches that offer good performance, based on which we develop a prototype to evaluate the impact of using a parser in a conversational agent.
25

Structured learning with inexact search : advances in shift-reduce CCG parsing

Xu, Wenduan January 2017 (has links)
Statistical shift-reduce parsing involves the interplay of representation learning, structured learning, and inexact search. This dissertation considers approaches that tightly integrate these three elements and explores three novel models for shift-reduce CCG parsing. First, I develop a dependency model, in which the selection of shift-reduce action sequences producing a dependency structure is treated as a hidden variable; the key components of the model are a dependency oracle and a learning algorithm that integrates the dependency oracle, the structured perceptron, and beam search. Second, I present expected F-measure training and show how to derive a globally normalized RNN model, in which beam search is naturally incorporated and used in conjunction with the objective to learn shift-reduce action sequences optimized for the final evaluation metric. Finally, I describe an LSTM model that is able to construct parser state representations incrementally by following the shift-reduce syntactic derivation process; I show expected F-measure training, which is agnostic to the underlying neural network, can be applied in this setting to obtain globally normalized greedy and beam-search LSTM shift-reduce parsers.
26

A study of the use of natural language processing for conversational agents

Wilkens, Rodrigo Souza January 2016 (has links)
linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional. / Language is a mark of humanity and conscience, with the conversation (or dialogue) as one of the most fundamental manners of communication that we learn as children. Therefore one way to make a computer more attractive for interaction with users is through the use of natural language. Among the systems with some degree of language capabilities developed, the Eliza chatterbot is probably the first with a focus on dialogue. In order to make the interaction more interesting and useful to the user there are other approaches besides chatterbots, like conversational agents. These agents generally have, to some degree, properties like: a body (with cognitive states, including beliefs, desires and intentions or objectives); an interactive incorporation in the real or virtual world (including perception of events, communication, ability to manipulate the world and communicate with others); and behavior similar to a human (including affective abilities). This type of agents has been called by several terms, including animated agents or embedded conversational agents (ECA). A dialogue system has six basic components. (1) The speech recognition component is responsible for translating the user’s speech into text. (2) The Natural Language Understanding component produces a semantic representation suitable for dialogues, usually using grammars and ontologies. (3) The Task Manager chooses the concepts to be expressed to the user. (4) The Natural Language Generation component defines how to express these concepts in words. (5) The dialog manager controls the structure of the dialogue. (6) The synthesizer is responsible for translating the agents answer into speech. However, there is no consensus about the necessary resources for developing conversational agents and the difficulties involved (especially in resource-poor languages). This work focuses on the influence of natural language components (dialogue understander and manager) and analyses, in particular the use of parsing systems as part of developing conversational agents with more flexible language capabilities. This work analyses what kind of parsing resources contributes to conversational agents and discusses how to develop them targeting Portuguese, which is a resource-poor language. To do so we analyze approaches to the understanding of natural language, and identify parsing approaches that offer good performance, based on which we develop a prototype to evaluate the impact of using a parser in a conversational agent.
27

A study of the use of natural language processing for conversational agents

Wilkens, Rodrigo Souza January 2016 (has links)
linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional. / Language is a mark of humanity and conscience, with the conversation (or dialogue) as one of the most fundamental manners of communication that we learn as children. Therefore one way to make a computer more attractive for interaction with users is through the use of natural language. Among the systems with some degree of language capabilities developed, the Eliza chatterbot is probably the first with a focus on dialogue. In order to make the interaction more interesting and useful to the user there are other approaches besides chatterbots, like conversational agents. These agents generally have, to some degree, properties like: a body (with cognitive states, including beliefs, desires and intentions or objectives); an interactive incorporation in the real or virtual world (including perception of events, communication, ability to manipulate the world and communicate with others); and behavior similar to a human (including affective abilities). This type of agents has been called by several terms, including animated agents or embedded conversational agents (ECA). A dialogue system has six basic components. (1) The speech recognition component is responsible for translating the user’s speech into text. (2) The Natural Language Understanding component produces a semantic representation suitable for dialogues, usually using grammars and ontologies. (3) The Task Manager chooses the concepts to be expressed to the user. (4) The Natural Language Generation component defines how to express these concepts in words. (5) The dialog manager controls the structure of the dialogue. (6) The synthesizer is responsible for translating the agents answer into speech. However, there is no consensus about the necessary resources for developing conversational agents and the difficulties involved (especially in resource-poor languages). This work focuses on the influence of natural language components (dialogue understander and manager) and analyses, in particular the use of parsing systems as part of developing conversational agents with more flexible language capabilities. This work analyses what kind of parsing resources contributes to conversational agents and discusses how to develop them targeting Portuguese, which is a resource-poor language. To do so we analyze approaches to the understanding of natural language, and identify parsing approaches that offer good performance, based on which we develop a prototype to evaluate the impact of using a parser in a conversational agent.
28

Serbo-Croatian Word Order: A Logical Approach

Mihalicek, Vedrana 18 December 2012 (has links)
No description available.
29

Generative and Computational Power of Combinatory Categorial Grammar

Schiffer, Lena Katharina 13 August 2024 (has links)
Combinatory categorial grammar (CCG) is a mildly-context sensitive formalism that is well-established in computational linguistics. At the basis of the grammar are a lexicon and a rule system: The lexicon assigns syntactic categories to the symbols of a given input string, and the rule system specifies how adjacent categories can be combined, yielding a derivation tree whose nodes are labeled by categories. In this thesis, we focus on composition rules, which are present in all variants of the grammar. Vijay-Shanker and Weir famously show that CCG can generate the same class of string languages as tree-adjoining grammar, linear indexed grammar, and head grammar. Their equivalence proof relies on two particular features of the grammar: ε-entries, which are lexicon entries for the empty word, and rule restrictions, which allow to restrict the rule set on a per-grammar basis. However, modern variants of CCG tend to avoid these features. This raises the question how this changes the generative and computational power of CCG. Another important feature is the rule degree, which determines how complex a certain category involved in a rule application may be. The goal of this thesis is to shed light on the effects that changing these features has. When modeling natural language, one is not only interested in the acceptability of a sentence, but also in its underlying structure. Therefore, we study the sets of constituency trees that CCG can generate, which are obtained by relabeling sets of derivation trees. We first provide a new proof of an analogous result by Buszkowski, showing that when only application rules are allowed, a proper subset of regular tree languages can be generated by CCG. Then, we show that when composition of first degree is included, CCG can generate exactly the regular tree languages. On the other hand, pure CCG, which allows all rules up to some degree, is shown to not even generate all local tree languages. Our main result on the generative capacity of CCG is its strong equivalence to tree-adjoining grammar. This means that these formalisms can generate the same class of tree languages. This is even the case when only composition rules of second degree and no ε-entries are used, showing that a CCG with these properties already has its full expressive power. Our constructions also provide an effective procedure for the removal of ε-entries. Regarding computational complexity, ε-entries and high rule degrees are in fact problematic. Kuhlmann, Satta, and Jonsson studied the universal recognition problem for CCG, which asks whether some given string is generated by some given grammar, considering both as part of the input. They prove that this problem is EXPTIME-complete if ε-entries are included, and NP-complete if not. We refine this result and show that the runtime is exponential only in the maximum rule degree of the grammar. Hence, when the rule degree is bounded by a constant, parsing becomes polynomial in the grammar size. This also holds when substitution rules are included in the rule system.
30

Bean Soup Translation: Flexible, Linguistically-motivated Syntax for Machine Translation

Mehay, Dennis Nolan 30 August 2012 (has links)
No description available.

Page generated in 0.0454 seconds