Spelling suggestions: "subject:"categorias derivados"" "subject:"ategorias derivados""
1 |
Álgebras m-quase inclinadas e m-quase hereditárias / m-quasitilted and m-almost hereditary algebrasPierin, Tanise Carnieri 06 July 2015 (has links)
Apresentamos uma generalização para as classes das álgebras quase inclinadas e quase hereditárias, que chamamos de álgebras m-quase inclinadas e m-quase hereditárias. Para estas últimas, pode-se obter uma trissecção de suas categorias de módulos determinada pelas subcategorias L^m = {X indecomponível; dimensão projetiva de Y é menor ou igual a m, para cada antecessor Y de X} e R = {X indecomponível; dimensão injetiva de Y é menor ou igual a 1, para cada sucessor Y de X}, além de ser possível mostrar que se existe um módulo E_m de forma a obtermos a igualdade de conjuntos {X módulo; Hom(E_m, \\tau X) = 0} = {X módulo; dimensão projetiva de X é menor ou igual a m}, então E_m é soma de somandos de módulos em R e todo caminho de indecomponíveis com início em um somando E de E_m e final em um módulo projetivo pode ser refinado a um caminho de morfismos irredutíveis, que é ainda seccional. Como consequência desse resultado obtém-se que as álgebras m-quase hereditárias são caracterizadas pelo fato de que todos seus módulos projetivos pertencem a L^m. É possível verificar que toda álgebra m-quase inclinada de dimensão global m+1 é m-quase hereditária e, consequentemente, que toda álgebra hereditária por partes de tipo mod H, para alguma álgebra hereditária H, com dimensão global m+1 é m-quase hereditária. Apresentamos ainda um exemplo de uma álgebra 2-quase hereditária que não é 2-quase inclinada, não sendo válida, portanto, a recíproca do resultado acima. Buscamos, dessa forma, estabelecer condições que quando assumidas sobre uma álgebra 2-quase hereditária possam garantir que esta é 2-quase inclinada e, em particular, hereditária por partes. Recorremos, para isso, à aplicação obtida por meio de uma adaptação de resultados de Happel, Reiten e Smalo, que sob certas hipóteses permite concluir que uma álgebra é álgebra de endomorfismos de um objeto inclinante. Como resultado, mostra-se que uma álgebra 2-quase hereditária com certas outras propriedades e que satisfaz as condições (H1), (H2) e (H3) é 2-quase inclinada. / We present a generalization of the classes of quasitilted and almost hereditary algebras, which we call m-quasitilted and m-almost hereditary algebras. For the latter one, we can obtain a trisection of their module categories determined by the following subcategories L^m = {X indecomposable; projective dimension of Y is at most m for each predecessor Y of X} and R = {X indecomposable; injective dimension of Y is at most 1 for each successor Y of X}. Moreover, if there exists a module E_m such that {X; Hom(E_m, \\tau X) = 0} = {X; projective dimension of X is at most m} then E_m is a sum of direct summands of modules in R and any path of indecomposable modules starting in a module E which is a direct summand of E_m and ending in a projective module can be refined to a path of irreducible morphisms, which is also sectional. This result on paths allow us to obtain a characterization for m-almost hereditary algebras in terms of their projective modules. It is also possible to prove that any m-quasitilted algebra with global dimension m+1 is a m-almost hereditary algebra and as a consequence we can obtain that any piecewise hereditary algebra of type mod H, for some hereditary algebra H, and with global dimension m+1 is m-almost hereditary. We present an example of a 2-almost hereditary which is not 2-quasitilted, which entails that the converse of the above mentioned result does not hold true. Thus we seek for conditions which can ensure that a given 2-almost hereditary is 2-quasitilted and, in particular, a piecewise hereditary algebra. For this, we use the correspondence obtained as an adaptation of results of Happel, Reiten and Smalo, which under certain assumptions shows that an algebra is an endomorphism algebra of a tilting object. It is shown that a 2-almost hereditary algebra with some other properties and satisfying (H1), (H2) and (H3) is 2-quasitilted.
|
2 |
Álgebras m-quase inclinadas e m-quase hereditárias / m-quasitilted and m-almost hereditary algebrasTanise Carnieri Pierin 06 July 2015 (has links)
Apresentamos uma generalização para as classes das álgebras quase inclinadas e quase hereditárias, que chamamos de álgebras m-quase inclinadas e m-quase hereditárias. Para estas últimas, pode-se obter uma trissecção de suas categorias de módulos determinada pelas subcategorias L^m = {X indecomponível; dimensão projetiva de Y é menor ou igual a m, para cada antecessor Y de X} e R = {X indecomponível; dimensão injetiva de Y é menor ou igual a 1, para cada sucessor Y de X}, além de ser possível mostrar que se existe um módulo E_m de forma a obtermos a igualdade de conjuntos {X módulo; Hom(E_m, \\tau X) = 0} = {X módulo; dimensão projetiva de X é menor ou igual a m}, então E_m é soma de somandos de módulos em R e todo caminho de indecomponíveis com início em um somando E de E_m e final em um módulo projetivo pode ser refinado a um caminho de morfismos irredutíveis, que é ainda seccional. Como consequência desse resultado obtém-se que as álgebras m-quase hereditárias são caracterizadas pelo fato de que todos seus módulos projetivos pertencem a L^m. É possível verificar que toda álgebra m-quase inclinada de dimensão global m+1 é m-quase hereditária e, consequentemente, que toda álgebra hereditária por partes de tipo mod H, para alguma álgebra hereditária H, com dimensão global m+1 é m-quase hereditária. Apresentamos ainda um exemplo de uma álgebra 2-quase hereditária que não é 2-quase inclinada, não sendo válida, portanto, a recíproca do resultado acima. Buscamos, dessa forma, estabelecer condições que quando assumidas sobre uma álgebra 2-quase hereditária possam garantir que esta é 2-quase inclinada e, em particular, hereditária por partes. Recorremos, para isso, à aplicação obtida por meio de uma adaptação de resultados de Happel, Reiten e Smalo, que sob certas hipóteses permite concluir que uma álgebra é álgebra de endomorfismos de um objeto inclinante. Como resultado, mostra-se que uma álgebra 2-quase hereditária com certas outras propriedades e que satisfaz as condições (H1), (H2) e (H3) é 2-quase inclinada. / We present a generalization of the classes of quasitilted and almost hereditary algebras, which we call m-quasitilted and m-almost hereditary algebras. For the latter one, we can obtain a trisection of their module categories determined by the following subcategories L^m = {X indecomposable; projective dimension of Y is at most m for each predecessor Y of X} and R = {X indecomposable; injective dimension of Y is at most 1 for each successor Y of X}. Moreover, if there exists a module E_m such that {X; Hom(E_m, \\tau X) = 0} = {X; projective dimension of X is at most m} then E_m is a sum of direct summands of modules in R and any path of indecomposable modules starting in a module E which is a direct summand of E_m and ending in a projective module can be refined to a path of irreducible morphisms, which is also sectional. This result on paths allow us to obtain a characterization for m-almost hereditary algebras in terms of their projective modules. It is also possible to prove that any m-quasitilted algebra with global dimension m+1 is a m-almost hereditary algebra and as a consequence we can obtain that any piecewise hereditary algebra of type mod H, for some hereditary algebra H, and with global dimension m+1 is m-almost hereditary. We present an example of a 2-almost hereditary which is not 2-quasitilted, which entails that the converse of the above mentioned result does not hold true. Thus we seek for conditions which can ensure that a given 2-almost hereditary is 2-quasitilted and, in particular, a piecewise hereditary algebra. For this, we use the correspondence obtained as an adaptation of results of Happel, Reiten and Smalo, which under certain assumptions shows that an algebra is an endomorphism algebra of a tilting object. It is shown that a 2-almost hereditary algebra with some other properties and satisfying (H1), (H2) and (H3) is 2-quasitilted.
|
3 |
Teoremas de decomposição, degenerescência e anulamento em característica positiva / Decomposition, degeneration and vanishing theorems in positive characteristicCardoso, Nuno Filipe de Andrade, 1988- 25 August 2018 (has links)
Orientador: Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T16:48:31Z (GMT). No. of bitstreams: 1
Cardoso_NunoFilipedeAndrade_M.pdf: 1858794 bytes, checksum: bbe47182338feb3de60b480df87b52a7 (MD5)
Previous issue date: 2014 / Resumo: Os teoremas de degenerescência de Hodge e de anulamento de Kodaira, Akizuki e Nakano são de suma importância na teoria de variedades complexas. Usando o teorema de comparação de Serre, ambos podem ser traduzidos para o contexto de esquemas projetivos e suaves sobre um corpo de característica zero. Para corpos de característica positiva, no entanto, os dois deixam de valer sem hipóteses adicionais, sendo que os primeiros contra-exemplos foram encontrados por Mumford e Raynaud. O objetivo desta dissertação é apresentar um teorema devido a Deligne e Illusie que assegura a degenerescência da seqüência espectral de Hodge-de Rham e uma versão do teorema de Kodaira, Akizuki e Nakano para certos esquemas projetivos e suaves sobre um corpo perfeito de característica positiva. Nos propusemos a dar um tratamento, na medida do possível, auto-suficiente / Abstract: The Hodge degeneration theorem and the Kodaira, Akizuki and Nakano's vanishing theorem are of paramount importance in the theory of complex manifolds. Using Serre's comparison theorem, both can be translated to the context of smooth projective schemes over a field of characteristic zero. For fields of positive characteristic, however, both fail to hold without additional hypothesis, and the first counterexamples were found by Mumford and Raynaud. Our goal in this dissertation is to present a theorem due to Deligne and Illusie that ensures the degeneration of the Hodge-de Rham spectral sequence and a version of the theorem of Kodaira, Akizuki and Nakano for certain smooth projective schemes over a perfect field of positive characteristic. We tried to keep the treatment as self-contained as possible / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.0787 seconds