• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized relations for compositional models of meaning

Genovese, Fabrizio Romano January 2017 (has links)
In this thesis, tools of categorical quantum mechanics are used to explain natural language from a cognitive point of view. Categories of generalized relations are developed for the task, examples are provided, and languages that are particularly tricky to describe using this approach are taken into consideration.
2

Categorical quantum dynamics

Gogioso, Stefano January 2016 (has links)
Since their original introduction, strongly complementary observables have been a fundamental ingredient of the ZX calculus, one of the most successful fragments of Categorical Quantum Mechanics (CQM). In this thesis, we show that strong complementarity plays a vastly greater role in quantum theory. Firstly, we use strong complementarity to introduce dynamics and symmetries within the framework of CQM, which we also extend to infinite-dimensional separable Hilbert spaces: these were long-missing features, which open the way to a wealth of new applications. The coherent treatment presented in this work also provides a variety of novel insights into the dynamics and symmetries of quantum systems: examples include the extremely simple characterisation of symmetry-observable duality, the connection of strong complementarity with the Weyl Canonical Commutation Relations, the generalisations of Feynman's clock construction, the existence of time observables and the emergence of quantum clocks. Secondly, we show that strong complementarity is a key resource for quantum algorithms and protocols. We provide the first fully diagrammatic, theory-independent proof of correctness for the quantum algorithm solving the Hidden Subgroup Problem, and show that strong complementarity is the feature providing the quantum advantage. In quantum foundations, we use strong complementarity to derive the exact conditions relating non-locality to the structure of phase groups, within the context of Mermin-type non-locality arguments. Our non-locality results find further application to quantum cryptography, where we use them to define a quantum-classical secret sharing scheme with provable device-independent security guarantees. All in all, we argue that strong complementarity is a truly powerful and versatile building block for quantum theory and its applications, and one that should draw a lot more attention in the future.
3

Completeness and the ZX-calculus

Backens, Miriam K. January 2015 (has links)
Graphical languages offer intuitive and rigorous formalisms for quantum physics. They can be used to simplify expressions, derive equalities, and do computations. Yet in order to replace conventional formalisms, rigour alone is not sufficient: the new formalisms also need to have equivalent deductive power. This requirement is captured by the property of completeness, which means that any equality that can be derived using some standard formalism can also be derived graphically. In this thesis, I consider the ZX-calculus, a graphical language for pure state qubit quantum mechanics. I show that it is complete for pure state stabilizer quantum mechanics, so any problem within this fragment of quantum theory can be fully analysed using graphical methods. This includes questions of central importance in areas such as error-correcting codes or measurement-based quantum computation. Furthermore, I show that the ZX-calculus is complete for the single-qubit Clifford+T group, which is approximately universal: any single-qubit unitary can be approximated to arbitrary accuracy using only Clifford gates and the T-gate. In experimental realisations of quantum computers, operations have to be approximated using some such finite gate set. Therefore this result implies that a wide range of realistic scenarios in quantum computation can be analysed graphically without loss of deductive power. Lastly, I extend the use of rigorous graphical languages outside quantum theory to Spekkens' toy theory, a local hidden variable model that nevertheless exhibits some features commonly associated with quantum mechanics. The toy theory for the simplest possible underlying system closely resembles stabilizer quantum mechanics, which is non-local; it thus offers insights into the similarities and differences between classical and quantum theories. I develop a graphical calculus similar to the ZX-calculus that fully describes Spekkens' toy theory, and show that it is complete. Hence, stabilizer quantum mechanics and Spekkens' toy theory can be fully analysed and compared using graphical formalisms. Intuitive graphical languages can replace conventional formalisms for the analysis of many questions in quantum computation and foundations without loss of mathematical rigour or deductive power.
4

The algebra of entanglement and the geometry of composition

Hadzihasanovic, Amar January 2017 (has links)
String diagrams turn algebraic equations into topological moves that have recurring shapes, involving the sliding of one diagram past another. We individuate, at the root of this fact, the dual nature of polygraphs as presentations of higher algebraic theories, and as combinatorial descriptions of "directed spaces". Operations of polygraphs modelled on operations of topological spaces are used as the foundation of a compositional universal algebra, where sliding moves arise from tensor products of polygraphs. We reconstruct several higher algebraic theories in this framework. In this regard, the standard formalism of polygraphs has some technical problems. We propose a notion of regular polygraph, barring cell boundaries that are not homeomorphic to a disk of the appropriate dimension. We define a category of non-degenerate shapes, and show how to calculate their tensor products. Then, we introduce a notion of weak unit to recover weakly degenerate boundaries in low dimensions, and prove that the existence of weak units is equivalent to a representability property. We then turn to applications of diagrammatic algebra to quantum theory. We re-evaluate the category of Hilbert spaces from the perspective of categorical universal algebra, which leads to a bicategorical refinement. Then, we focus on the axiomatics of fragments of quantum theory, and present the ZW calculus, the first complete diagrammatic axiomatisation of the theory of qubits. The ZW calculus has several advantages over ZX calculi, including a computationally meaningful normal form, and a fragment whose diagrams can be read as setups of fermionic oscillators. Moreover, its generators reflect an operational classification of entangled states of 3 qubits. We conclude with generalisations of the ZW calculus to higher-dimensional systems, including the definition of a universal set of generators in each dimension.
5

ZX-Calculi for Quantum Computing and their Completeness / ZX-Calculs pour l'informatique quantique et leur complétude

Vilmart, Renaud 19 September 2019 (has links)
Le ZX-Calculus est un langage graphique puissant et intuitif, issu de la théorie des catégories, et qui permet de raisonner et calculer en quantique. Les évolutions quantiques sont vues dans ce formalisme comme des graphes ouverts, ou diagrammes, qui peuvent être transformés localement selon un ensemble d’axiomes qui préservent le résultat du calcul. Un aspect des plus importants du langage est sa complétude : Étant donnés deux diagrammes qui représentent la même évolution quantique, puis-je transformer l’un en l’autre en utilisant seulement les règles graphiques permises par le langage ? Si c’est le cas, cela veut dire que le langage graphique capture entièrement la mécanique quantique. Le langage est connu comme étant complet pour une sous-classe (ou fragment) particulière d’évolutions quantiques, appelée Clifford. Malheureusement, celle-ci n’est pas universelle : on ne peut pas représenter, ni même approcher, certaines évolutions. Dans cette thèse, nous proposons d’élargir l’ensemble d’axiomes pour obtenir la complétude pour des fragments plus grands du langage, qui en particulier sont approximativement universels, voire universels. Pour ce faire, dans un premier temps nous utilisons la complétude d’un autre langage graphique et transportons ce résultat au ZX-Calculus. Afin de simplifier cette fastidieuse étape, nous introduisons un langage intermédiaire, intéressant en lui-même car il capture un fragment particulier mais universel de la mécanique quantique : Toffoli-Hadamard. Nous définissons ensuite la notion de diagramme linéaire, qui permet d’obtenir une preuve uniforme pour certains ensembles d’équations. Nous définissons également la notion de décomposition d’un diagramme en valeurs singuliaires, ce qui nous permet de nous épargner un grand nombre de calculs. Dans un second temps, nous définissons une forme normale qui a le mérite d’exister pour une infinité de fragments du langage, ainsi que pour le langage lui-même, sans restriction. Grâce à cela, nous reprouvons les résultats de complétude précédents, mais cette fois sans utiliser de langage tiers, et nous en dérivons de nouveaux, pour d’autres fragments. Les états contrôlés, utilisés pour la définition de forme normale, s’avèrent en outre utiles pour réaliser des opérations non-triviales telles que la somme, le produit terme-à-terme, ou la concaténation. / The ZX-Calculus is a powerful and intuitive graphical language, based on category theory, that allows for quantum reasoning and computing. Quantum evolutions are seen in this formalism as open graphs, or diagrams, that can be transformed locally according to a set of axioms that preserve the result of the computation. One of the most important aspects of language is its completeness: Given two diagrams that represent the same quantum evolution, can I transform one into the other using only the graphical rules allowed by the language? If this is the case, it means that the graphical language captures quantum mechanics entirely. The language is known to be complete for a particular subclass (or fragment) of quantum evolutions, called Clifford. Unfortunately, this one is not universal: we cannot represent, or even approach, certain quantum evolutions. In this thesis, we propose to extend the set of axioms to obtain completeness for larger fragments of the language, which in particular are approximately universal, or even universal. To do this, we first use the completeness of another graphical language and transport this result to the ZX-Calculus. In order to simplify this tedious step, we introduce an intermediate language, interesting in itself as it captures a particular but universal fragment of quantum mechanics: Toffoli-Hadamard. We then define the notion of a linear diagram, which provides a uniform proof for some sets of equations. We also define the notion of singular value decomposition of a diagram, which allows us to avoid a large number of calculations. In a second step, we define a normal form that exists for an infinite number of fragments of the language, as well as for the language itself, without restriction. Thanks to this, we reprove the previous completeness results, but this time without using any third party language, and we derive new ones for other fragments. The controlled states, used for the definition of the normal form, are also useful for performing non-trivial operations such as sum, term-to-term product, or concatenation.
6

Compositional distributional semantics with compact closed categories and Frobenius algebras

Kartsaklis, Dimitrios January 2014 (has links)
The provision of compositionality in distributional models of meaning, where a word is represented as a vector of co-occurrence counts with every other word in the vocabulary, offers a solution to the fact that no text corpus, regardless of its size, is capable of providing reliable co-occurrence statistics for anything but very short text constituents. The purpose of a compositional distributional model is to provide a function that composes the vectors for the words within a sentence, in order to create a vectorial representation that re ects its meaning. Using the abstract mathematical framework of category theory, Coecke, Sadrzadeh and Clark showed that this function can directly depend on the grammatical structure of the sentence, providing an elegant mathematical counterpart of the formal semantics view. The framework is general and compositional but stays abstract to a large extent. This thesis contributes to ongoing research related to the above categorical model in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models thatfind intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.

Page generated in 0.0934 seconds