Spelling suggestions: "subject:"categorical interior operator"" "subject:"cathegorical interior operator""
1 |
Quasi-uniform and syntopogenous structures on categoriesIragi, Minani January 2019 (has links)
Philosophiae Doctor - PhD / In a category C with a proper (E; M)-factorization system for morphisms, we further investigate
categorical topogenous structures and demonstrate their prominent role played
in providing a uni ed approach to the theory of closure, interior and neighbourhood operators.
We then introduce and study an abstract notion of C asz ar's syntopogenous structure
which provides a convenient setting to investigate a quasi-uniformity on a category. We
demonstrate that a quasi-uniformity is a family of categorical closure operators. In particular,
it is shown that every idempotent closure operator is a base for a quasi-uniformity.
This leads us to prove that for any idempotent closure operator c (interior i) on C there
is at least a transitive quasi-uniformity U on C compatible with c (i). Various notions of
completeness of objects and precompactness with respect to the quasi-uniformity de ned
in a natural way are studied.
The great relationship between quasi-uniformities and closure operators in a category
inspires the investigation of categorical quasi-uniform structures induced by functors. We
introduce the continuity of a C-morphism with respect to two syntopogenous structures
(in particular with respect to two quasi-uniformities) and utilize it to investigate the quasiuniformities
induced by pointed and copointed endofunctors. Amongst other things, it
is shown that every quasi-uniformity on a re
ective subcategory of C can be lifted to a
coarsest quasi-uniformity on C for which every re
ection morphism is continuous. The
notion of continuity of functors between categories endowed with xed quasi-uniform
structures is also introduced and used to describe the quasi-uniform structures induced
by an M- bration and a functor having a right adjoint.
|
Page generated in 0.1004 seconds