• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-uniform and syntopogenous structures on categories

Iragi, Minani January 2019 (has links)
Philosophiae Doctor - PhD / In a category C with a proper (E; M)-factorization system for morphisms, we further investigate categorical topogenous structures and demonstrate their prominent role played in providing a uni ed approach to the theory of closure, interior and neighbourhood operators. We then introduce and study an abstract notion of C asz ar's syntopogenous structure which provides a convenient setting to investigate a quasi-uniformity on a category. We demonstrate that a quasi-uniformity is a family of categorical closure operators. In particular, it is shown that every idempotent closure operator is a base for a quasi-uniformity. This leads us to prove that for any idempotent closure operator c (interior i) on C there is at least a transitive quasi-uniformity U on C compatible with c (i). Various notions of completeness of objects and precompactness with respect to the quasi-uniformity de ned in a natural way are studied. The great relationship between quasi-uniformities and closure operators in a category inspires the investigation of categorical quasi-uniform structures induced by functors. We introduce the continuity of a C-morphism with respect to two syntopogenous structures (in particular with respect to two quasi-uniformities) and utilize it to investigate the quasiuniformities induced by pointed and copointed endofunctors. Amongst other things, it is shown that every quasi-uniformity on a re ective subcategory of C can be lifted to a coarsest quasi-uniformity on C for which every re ection morphism is continuous. The notion of continuity of functors between categories endowed with xed quasi-uniform structures is also introduced and used to describe the quasi-uniform structures induced by an M- bration and a functor having a right adjoint.

Page generated in 0.0951 seconds