Spelling suggestions: "subject:"cathode"" "subject:"kathode""
31 |
A soft x-ray calibration sourceWojtowicz, Susan S. January 1979 (has links)
Thesis (M.S.)--University of Michigan, 1979.
|
32 |
New metastable cathode materials for lithium-ion batteriesAmigues, Adrien Marie January 2018 (has links)
This PhD work is dedicated to the discovery and study of new cathode materials for lithium-ion batteries. To obtain new materials, a well-known strategy based on ion-exchanging alkali metals within stable crystalline frameworks was used. Ion-exchange procedures between sodium and lithium ions were performed on known sodiated materials, NaMnTiO4 with the Na0.44MnO2 structure and NaFeTiO4 and Na2Fe3-xSn2xSb1-xO8 (0 ≤ x ≤ 1) with the calcium-ferrite structure. A combination of Energy-Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), X-ray (XRD) and Neutron (NPD) diffractions was used to determine the crystal structure of the samples obtained via ion-exchange and confirmed that LiMnTiO4 and LiFeTiO4 and Li2Fe3-xSn2xSb1-xO8 (0 ≤ x ≤ 1) were obtained with a 1:1 ion-exchange between sodium and lithium. LiMnTiO4 has the orthorhombic Pbam space group, with a = 9.074(5), b = 24.97(1) and c = 2.899(2) Å. The shapes and dimensions of the channels are modified compared to NaMnTiO4, with displaced alkali metal positions and occupancies. LiMnTiO4 was cycled vs Li and up to 0.89 lithium ions can be reversibly inserted into the structure, with a discharge capacity of 137 mAh/g after 20 cycles at C/20 and room temperature. At 60°C, all the lithium is removed at the end of the first charge at C/20, with subsequent cycles showing reversible insertion of 1.06 Li-ions when cycled between 1.5 and 4.6 V. The electrochemistry of calcium-ferrite LiFeTiO4 and Li2Fe3SbO8 was investigated in half cells versus lithium and up to 0.63 and 1.35 lithium ions can be reversibly inserted into the structure after 50 cycles at a C/5 rate, respectively. LiFeTiO4 showed good cyclability with no capacity fade observed after the second cycle while Li2Fe3SbO8 exhibited a constant capacity fade with a 60 % capacity retention after the 50th cycle. Doping Li2Fe3SbO8 with tin reduces the capacity. However, the capacity retention is significantly enhanced. For Li2Fe2.5Sb0.5SnO8 after 20 cycles at C/5, the capacity is stable and comparable with that observed for Li2Fe3SbO8 after the same number of cycles. Using ion-exchange procedures has allowed new metastable materials to be obtained which have the potential to be used as cathodes in lithium-ion batteries. Doping these families of materials with different atoms has been shown to improve their electrochemical performance. Ex situ XRD was used to demonstrate that the original structures of LiMnTiO4, LiFeTiO4 and Li2Fe3SbO8 are retained during cycling. The volume change observed for Li2Fe3SbO8 upon delithiation was particularly noteworthy with a small decrease of 0.9 % at the end of charge when cycled at C/100 and room temperature, indicating structural stability upon lithium insertion/de-insertion.
|
33 |
Thermionic Electron Emission Microscopy Studies of Barium and Scandium Oxides on TungstenVaughn, Joel M. 23 September 2010 (has links)
No description available.
|
34 |
Élaboration et caractérisations de matériaux de cathode et d'électrolyte pour pile à combustible à oxyde solide / Elaboration and characterization of cathode and electrolyte materials for solid oxide fuel cellDumaisnil, Kévin 08 September 2015 (has links)
L'énergie produite par des matières fossiles, pétrole et charbon, va se raréfier de manière inéluctable et couter de plus en plus cher à moyen terme. Pour pallier à la fin des matières fossiles, le développement d'énergies alternatives est indispensable. Parmi celles-ci, la production d'électricité et de chaleur à partir d'hydrogène commence à se développer grâce aux piles à combustible (PAC) depuis les très faibles puissances (des microwatts pour alimenter les capteurs) jusqu'aux fortes puissances (des Mégawatts pour l'industrie) en passant par des puissances moyennes (des kilowatts pour le résidentiel). Une PAC est constituée de 3 éléments : 2 électrodes (anode et cathode) séparées par un électrolyte. Dans cette thèse, ces 3 éléments sont constitués d'oxydes solides et la pile est appelée SOFC (Solid Oxide Fuel Cell). Les piles SOFC actuellement commercialisées fonctionnent à de très hautes températures, typiquement supérieures à 800°C. L'objectif du travail a été d'élaborer des oxydes pour diminuer cette température vers 600°C ce qui permet d'utiliser de l'acier pour contenir ces piles. Pour que la pile SOFC fonctionne à cette température, il est impératif de diminuer la résistance électrique des 2 électrodes et de l'électrolyte de manière à récupérer une tension électrique continue maximale aux bornes de la pile et aussi à faire passer un courant électrique élevé dans celle-ci. La cathode, en contact avec l'oxygène de l'air, est l'élément le plus critique à optimiser. Nous avons choisi comme matériau de cathode un matériau déjà étudié, La₀.₆Sr₀.₄Co₀.₈Fe₀.₂O₃ (LSCF) et comme électrolyte Ce₀.₉Gd₀.₁O₂ (CGO) connu comme performant en dessous de 650 °C. Nous avons élaboré ces matériaux par une méthode de chimie douce, la méthode sol-gel Péchini, et caractérisé ceuxi-ci par diffraction de rayons X et microscopie électronique à balayage. Une part importante du travail a été la caractérisation électrique à l'aide de mesures d'impédance complexe dans une large gamme de fréquence (0,05 Hz à 2 MHz) et de température (300°C à 700 °C). Le meilleur résultat a été obtenu avec une cathode composite poreuse d'épaisseur 40 µm constituée à masses égales de LSCF et de CGO déposée par sérigraphie sur une céramique dense de CGO d'épaisseur 1,5 mm. De plus, un film mince dense de LSCF d'épaisseur 0,1 µm environ a été déposé par centrifugation pour améliorer l'interface entre la cathode et l'électrolyte. À 600 °C la résistance de cette cathode a été mesurée à 0,13 Ω pour 1 cm² de cathode : cette valeur est à l'état de l'art. Une étude du vieillissement de cette cathode et de l'électrolyte a été effectuée à 600 °C pendant 1000 h en continu sous air : cela s'est traduit par une augmentation de la résistance de la cathode de 32%. Ceci peut être lié à la différence de valeurs des coefficients d'expansion thermique des matériaux de cathode et d'électrolyte. / Energy made from fossil fuels, oil or coal, is becoming increasingly rare and its price will increase in the near future. Developing alternative energy sources could compensate the use of fossil fuel. Particularly, an alternative form of energy is being developed through fuel cells, through the production of electricity and heat from hydrogen. Fuel cells can provide low wattage (microwatts for sensor applications), medium wattage (kilowatts for residential applications) and high wattage (megawatts for the industry). A fuel cell consists of 3 components : 2 electrodes (anode and cathode) separated by an electrolyte. In my work, I use solid pxide materials for these three elements in order to expand on the literature of Solid Oxide Fuel Cell (SOFC). Commercialized SOFCs currently operate at very high temperatures, typically above 800°C. The objective of this study was to develop oxides that could decrease the working temperature of the cell to 600°C, which would allow the use of steel to contain these fuel cells. In order to enable the SOFC to operate at this temperature, it is imperative to decrease the electrical resistances of the two electrodes and electrolyte in order to collect a continuous voltage which is maximal at the terminals of the fuel cell, and also to have a high electric current going through the fuel cell. The cathode, in contact with the oxygen present in the atmosphere, is the most critical element to be optimized. I close as a cathode material La₀.₆Sr₀.₄Co₀.₈Fe₀.₂O₃ (LSCF), which has already been studied. As electrolyte, I used Ce₀.₉Gd₀.₁O₂ (CGO) which is known to work below 650°C. I synthesized these materials through the Pechini method, a soft chemistry sol-gel method. The materials were characterized by X-ray diffraction and scanning electron microscopy. An important aspect of this work was the electrical characterization using complex impedance measurements in a wide frequency range (0,05 Hz to 2 MHz) and temperature (300°C to 700°C). The best result was obtained with a 40 µm thick, porous, composite cathode (LSCF/CGO 50/50 wt%) was deposited by screen printing on a 1,5 mm thick and dense CGO ceramic. In addition, a dense thin film of LSCF with a thickness of about 0,1 µm was spin-coated between the cathode and the electrolyte to improve the interface. At 600°C the measured resistance of the cathode was 0,13 Ω for 1 cm² : this value is similar to the results found in the state of the art. An aging study of the cathode and the electrolyte was carried out at 600 °C for 1000 h in air : the resistance of the cathode increased of 32%. This may be related to the different values of the thermal expansion coefficients of the cathode and electrolyte materials.
|
35 |
Synthesis, electrochemistry and First Principles Calculation studies of layered Li-Ni-Ti-O compoundsKang, Kisuk, Carlier, Dany, Reed, John, Arroyo, Elena M., Meng, Shirley Y., Ceder, Gerbrand 01 1900 (has links)
New layered cathode materials, Li₀.₉Ni₀.₄₅Ti₀.₅₅O₂, were synthesized by means of ion-exchange from Na₀.₉Ni₀.₄₅Ti₀.₅₅O₂. The degree of cation disordering in the material depends critically on the synthesis conditions. Longer times and higher temperatures in the ion-exchange process induced more cation disordering. However, the partially disordered phase showed better capacity retention than the least disordered phase. First principles calculations indicated this could be attributed to the migration of Ti⁺⁴ into the Li layer during the electrochemical testing, which seems to depend sensitively on the Ni⁺² -Ti⁺⁴ configuration in the transition metal layer. The poor conductivity of this material could also be the reason for its low specific capacity according to the Density of States (DOS) obtained from first principles calculations indicating that only Ni participates in the electronic conductivity. / Singapore-MIT Alliance (SMA)
|
36 |
Nanostructured Cathodes : A step on the path towards a fully interdigitated 3-D microbatteryRehnlund, David January 2011 (has links)
The Li-ion field of battery research has in the latest decades made substantial progress and is seen to be the most promising battery technology due to the high volume and specific energy densities of Li-ion batteries. However, in order to achieve a battery capable of competing with the energy density of a combustion engine, further research into new electrode materials is required. As the cathode materials are the limiting factor in terms of capacity, this is the main area in need of further research. The introduction of 3-D electrodes brought new hope as the ion transportpath is decreased as well as an increased electrode area leading to an increased capacity. This thesis work has focused on the development of aluminium 3-D current collectors in order to improve the electrode area and shorten the Li-ion transportpath. By using a template assisted electrodeposition technique, nanorods of controlled magnitude and order can be synthesized. Furthermore, the electrodeposition brings excellent possibilities of upscaling for future industrial manufacturing of the batterycells. A polycarbonate template material which showed interesting properties,was used in the electrodeposition of aluminium nanorods. As the template pores were nonhomogeneously ordered a number of nonordered nanorods were expected to arise during the deposition. However, a surplus of nanorods in reference to the template pores was acquired. This behavior was investigated and a hypothesis was formed as to the mechanism of the nanorod formation. In order to achieve acomplete cathode electrode, a coating of an ion host material on the nanorods isneeded. Due to its high capacity and voltage, vanadium oxide was selected. Based on previous work with electrodeposition of V2O5 on platinum, a series of experiments were performed to mimic the deposition on an aluminium sample. Unfortunately, the deposition was unsuccessful as the experimental conditions resulted in aluminium corrosion which in turn made deposition of the cathode material impossible. The pH dependence of the deposition was evaluated and the conclusion was drawn, that electrodeposition of vanadium oxide on aluminium is not possible using this approach.
|
37 |
Structural and electrochemical characterization of high-energy oxide cathodes for lithium ion batteriesLee, Eun Sung 25 February 2013 (has links)
Lithium-ion batteries are the most promising rechargeable battery system for both vehicle applications and stationary storage of electricity produced from renewable sources such as solar and wind energies. However, the current lithium ion technology does not fully meet the requirements of these applications in terms of energy and power density. One approach to realizing a combination of high energy and power density is to use a composite cathode that consists of the high-capacity lithium-rich layered oxide Li[Li,Mn,Ni,Co]O2 and the high-voltage spinel oxide LiMn1.5Ni0.5O4. This dissertation explores the unique structural characteristics and their effect on the electrochemical performance of the layered-spinel composite oxide cathodes along with individual layered and spinel oxides over a wide voltage range (5.0 – 2.0 V).
Initially, the effect of cation ordering on the electrochemical and structural characteristics of LiMn1.5Ni0.5O4 during cycling between 5.0 and 2.0 V were investigated by an analysis of the X-ray diffraction (XRD) and electrochemical data. Structural studies revealed that the cation ordering affects the size of the empty-octahedral sites in the spinel lattice. The differences in the size of the empty-octahedral sites affect the discharge profile below 3 V due to the variation in lattice distortion during lithium ion insertion into 16c octahedral sites. With the doped LiMn1.5Ni0.5-xMxO4 (M = Cr, Fe, Co, and Ga) spinels, different dopant ions have different effects on the degree of cation ordering due to the differences in ionic radii and surface-segregation characteristics.
The compositional and wt.% variations of the layered and spinel phases from the nominal values in the layered-spinel composites were obtained by employing a joint XRD and neutron diffraction (ND) Rietveld refinement method. With the obtained composition and ex-situ XRD data, the mechanism for the increase in capacity and the facile phase transformation of the layered phase in the composite cathodes to a 3 V spinel-like phase during cycling was proposed. Investigations focused on synthesis temperature revealed that the electrochemical characteristics of the composites are highly affected by the synthesis temperature due to the change in the surface area of the sample and cation ordering of the spinel phase.
In addition, the electrochemical performance of the lithium-rich layered oxide Li[Li,Mn,Ni,Co]O2 could be improved by blending it with a lithium-free insertion host VO2(B) and by controlling the amount of lithium ions extracted from the layered lattice during the first charge process. / text
|
38 |
Surface Modification of LiNi0.5Mn0.3Co0.2O2 Cathode for Improved Battery PerformanceLynch, Thomas 2012 August 1900 (has links)
This thesis details electrical and physical measurements of pulsed laser deposition-applied thin film coatings of Alumina, Ceria, and Yttria-stabilized Zirconia (YSZ) on a LiNi0.5Mn0.3Co0.2O2 (NMC) cathode in a Lithium ion battery. Typical NMC cathodes exhibit problems such as decreased rate performance and an opportunity for increased capacity exists by raising operation voltage beyond the electrolyte stability window. Very thin (~10 nm) coatings of stable oxides provide a pathway to solve both problems. As well, the electrochemical impedance spectra of the uncoated and coated cells were measured after different numbers of cycles to reveal the property variation in the cathode. Further understanding of the mechanism of rate performance enhancement and chemical protection by thin oxide coatings will continue to improve battery capability and open up new applications.
Ceria-coated Li-NMC cells show the best capacity and rate performance in battery testing. Through electrochemical impedance spectroscopy (EIS), the surface film resistance was found to remain stable or even drop slightly after repeated cycling at high voltage. CeO2 is proposed as a coating for Lithium ion battery cathodes owing to its high chemical stability and the demonstrated but not yet well understood electrical conductivity. Alumina-coated cathode shows comparable performance as that of the uncoated cell in the early stage of the test, but through the course of testing the rate capability and recoverable capacity is improved. This is possibly due to Al2O3?s well-known abilities as HF scavenger and chemically inert nature. YSZ-coated cathode performs worse than the uncoated ones in terms of capacity, rate capability, and EIS-related figures of merit. The reason for the poor performance is not yet known, and repeatability tests are under way to verify performance. High voltage cycling reveals no obvious difference in irreversible loss between the coated or uncoated cells. The reason for the lack of distinction could be the relatively small percentage of surface coating compared to the thick doctor-blade processed cathode layer.
|
39 |
Effects of depth cues on depth judgments using a field-sequential stereoscopic CRT display /Reinhart, William Frank, January 1990 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1990. / Vita. Abstract. Includes bibliographical references (leaves 245-259). Also available via the Internet.
|
40 |
The IE131 programmable CRT terminal /Davis, Barrie Williams. January 1975 (has links) (PDF)
Thesis (M.E.) -- University of Adelaide, Department of Electrical Engineering, 1977.
|
Page generated in 0.0433 seconds