• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 41
  • 38
  • 31
  • 18
  • 11
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 456
  • 104
  • 99
  • 89
  • 78
  • 73
  • 65
  • 59
  • 53
  • 51
  • 50
  • 49
  • 49
  • 47
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A study of the persistence characteristics of various cathode ray tube phosphors

January 1948 (has links)
W.T. Dyall. / "January 16, 1948." Based on a thesis submitted to M.I.T. Dept. of Physics, 1948. / Bibliography: p. 102-104. / Army Signal Corps Contract No. W-36-039 sc-32037.
72

Sulfur based Composite Cathode Materials for Rechargeable Lithium Batteries

Zhang, Yongguang January 2013 (has links)
Lithium-ion batteries are leading the path for the power sources for various portable applications, such as laptops and cellular phones, which is due to their relatively high energy density, stable and long cycle life. However, the cost, safety and toxicity issues are restricting the wider application of early generations of lithium-ion batteries. Recently, cheaper and less toxic cathode materials, such as LiFePO₄ and a wide range of derivatives of LiMn₂O₄, have been successfully developed and commercialized. Furthermore, cathode material candidates, such as LiCoPO₄, which present a high redox potential at approximately 4.8 V versus Li⁺/Li, have received attention and are being investigated. However, the theoretical capacity of all of these materials is below 170 mAh g⁻¹, which cannot fully satisfy the requirements of large scale applications, such as hybrid electric vehicles and electric vehicles. Therefore, alternative high energy density and inexpensive cathode materials are needed to make lithium batteries more practical and economically feasible. Elemental sulfur has a theoretical specific capacity of 1672 mAh g⁻¹, which is higher than that of any other known cathode materials for lithium batteries. Sulfur is of abundance in nature (e.g., sulfur is produced as a by-product of oil extraction, and hundreds of millions of tons have been accumulated at the oil extraction sites) and low cost, and this makes it very promising for the next generation of cathode materials for rechargeable batteries. Despite the mentioned advantages, there are several challenges to make the sulfur cathode suitable for battery use, and the following are the main: (i) sulfur has low conductivity, which leads to low sulfur utilization and poor rate capability in the cathode; (ii) multistep electrochemical reduction processes generate various forms of soluble intermediate lithium polysulfides, which dissolve in the electrolyte, induce the so-called shuttle effect, and cause irreversible loss of sulfur active material over repeat cycles; (iii) volume change of sulfur upon cycling leads to its mechanical rupture and, consequently, rapid degradation of the electrochemical performance. A variety of strategies have been developed to improve the discharge capacity, cyclability, and Coulombic efficiency of the sulfur cathode in Li/S batteries. Among those techniques, preparation of sulfur/carbon and sulfur/conductive polymer composites has received considerable attention. Conductive carbon and polymer additives enhance the electrochemical connectivity between active material particles, thereby enhancing the utilization of sulfur and the reversibility of the system, i.e., improving the cell capacity and cyclability. Incorporation of conductive polymers into the sulfur composites provides a barrier to the diffusion of polysulfides, thus providing noticeable improvement in cyclability and hence electrochemical performance. Among the possible conductive polymers, polypyrrole (PPy) is one of the most promising candidates to prepare electrochemically active sulfur composites because PPy has a high electrical conductivity and a wide electrochemical stability window (0-5 V vs Li/Li⁺). In the first part of this thesis, the preparation of a novel nanostructured S/PPy based composites and investigation of their physical and electrochemical properties as a cathode for lithium secondary batteries are reported. An S/PPy composite with highly developed branched structure was obtained by a one-step ball-milling process without heat-treatment. The material exhibited a high initial discharge capacity of 1320 mAh g⁻¹ at a current density of 100 mA g⁻¹ (0.06 C) and retained about 500 mAh g⁻¹ after 40 cycles. Alternatively, in situ polymerization of the pyrrole monomer on the surface of nano-sulfur particles afforded a core-shell structure composite in which sulfur is a core and PPy is a shell. The composite showed an initial discharge capacity of 1199 mAh g⁻¹ at 0.2 C with capacity retention of 913 mAh g⁻¹ after 50 cycles, and of 437 mAh g⁻¹ at 2.5 C. Further improvement of the electrochemical performance was achieved by introducing multi-walled carbon nanotubes (MWNT), which provide a much more effective path for the electron transport, into the S/PPy composite. A novel S/PPy/MWNT ternary composite with a core-shell nano-tubular structure was developed using a two-step preparation method (in situ polymerization of pyrrole on the MWNT surface followed by mixing of the binary composite with nano-sulfur particles). This ternary composite cathode sustained 961 mAh g⁻¹ of reversible specific discharge capacity after 40 cycles at 0.1 C, and 523 mAh g⁻¹ after 40 cycles at 0.5 C. Yet another structure was prepared exploring the large surface area, superior electronic conductivity, and high mechanical flexibility graphene nanosheet (GNS). By taking advantage of both capillary force driven self-assembly of polypyrrole on graphene nanosheets and adhesion ability of polypyrrole to sulfur, an S/PPy/GNS composite with a dual-layered structure was developed. A very high initial discharge capacity of 1416 mAh g⁻¹ and retained a 642 mAh g⁻¹ reversible capacity after 40 cycles at 0.1 C rate. The electrochemical properties of the graphene loaded composite cathode represent a significant improvement in comparison to that exhibited by both the binary S/PPy and the MWCNT containing ternary composites. In the second part of this thesis, polyacrylonitrile (PAN) was investigated as a candidate to composite with sulfur to prepare high performance cathodes for Li/S battery. Unlike polypyrrole, which, in addition of being a conductive matrix, works as physical barrier for blocking polysulfides, PAN could react with sulfur to form inter- and/or intra-chain disulfide bonds, chemically confining sulfur and polysulfides. In the preliminary tests, PAN was ballmilled with an excess of elemental sulfur and the resulting mixture was heated at temperatures varying from 300°C to 350°C. During this step some H₂S gas was released as a result of the formation of rings with a conjugated π-system between sulfur and polymer backbone. These cyclic structures could ‘trap’ some of the soluble reaction products, improving the utilization of sulfur, as it was observed experimentally: the resulting S/PAN composite demonstrated a high sulfur utilization, large initial capacity, and high Coulombic efficiency. However, the poor electronic conductivity of the S/PAN binary composite compromises the rate capability and sulfur utilization at high C-rates. These issues were addressed by doping the composite with small amounts of components that positively affected the conductivity and reactivity of the cathode. Mg₀.₆Ni₀.₄O prepared by self-propagating high temperature synthesis was used as an additive in the S/PAN composite cathode and considerably improved its morphology stability, chemical uniformity, and electrochemical performance. The nanostructured composite containing Mg₀.₆Ni₀.₄O exhibited less sulfur agglomeration upon cycling, enhanced cathode utilization, improved rate capability, and superior reversibility, with a second cycle discharge capacity of over 1200 mAh g⁻¹, which was retained for over 100 cycles. Alternatively, graphene was used as conductive additive to form an S/PAN/Graphene composite with a well-connected conductive network structure. This ternary composite was prepared by ballmilling followed by low temperature heat treatment. The resulting material exhibited significantly improved rate capability and cycling performance delivering a discharge capacity of 1293 mAh g⁻¹ in the second cycle at 0.1 C. Even at up to 4 C, the cell still achieved a high discharge capacity of 762 mAh g⁻¹. Different approaches for the optimization of sulfur-based composite cathodes are described in this thesis. Experimental results indicate that the proposed methods constitute an important contribution in the development of the high capacity cathode for rechargeable Li/S battery technology. Furthermore, the innovative concept of sulfur/conductive polymer/conductive carbon ternary composites developed in this work could be used to prepare many other analogous composites, such as sulfur/polyaniline/carbon nanotube or sulfur/polythiophene/graphene, which could also lead to the development of new sulfur-based composites for high energy density applications. In particular, exploration of alternative polymeric matrices with high sulfur absorption ability is of importance for the attainment of composites that possess higher loading of sulfur, to increase the specific energy density of the cathode. Note that the material preparation techniques described here have the advantage of being reproducible, simple and inexpensive, compared with most procedures reported in the literature.
73

Structural Modifications and Capacity Fading of LiMn2O4 Cathode during Charge-Discharge of Secondary Lithium Ion Batteries

Huang, Ming-Ren 04 October 2003 (has links)
Abstract A vast majority of the studies devoted to Lithium manganese oxide deals with their electrochemical characteristics in lithium batteries. The main project of this study is to realize the structure evolution upon electrochemical cycling. The phase transformations under the charge and discharge testing are an interesting project. Nitrate or oxide precursor calcined at 800¢XC can produce single phase stoichiometric LiMn2O4. The hypo-stoichiometric compositions (xLi2O¡Ñ4MnO, x < 1) synthesized by Li-poor situation contain LiMn2O4 and Mn2O3. The hyper- stoichiometric compositions (xLi2O¡Ñ4MnO, x > 1) synthesized by Li-rich situation contain non-stoichiometric spinel LixMn2O4 (such as Li4Mn5O12 or Li2Mn4O9) and Li2MnO3. The lattice parameter of LiMn2O4 increases slightly with increase of the lithium content at x < 1 (0.823 ~ 0.824 nm), but decreases sharply for x = 1.0 ~ 1.8 (0.824 to 0.817 nm). Differential thermal analysis showed at temperature higher than 935&#x00BA;C, rocksalt phase (with tetragonal symmetry), Mn3O4 will be produced. Above 1045&#x00BA;C, the crystallite phases contain cubic LiMn2O3 spinel, tetragonal Mn3O4 and orthorhombic symmetry LiMnO2. After high temperature annealing (> 935&#x00BA;C), the residual phase is lithium-deficient structure, Mn3O4. Apparent facets with {111}, {011}, and {001} (and {113}) planes are usually observed. The LiMn2O4 crystallite appears to be a truncated cubo-octahedron. The lowest surface energy gsv for LiMn2O4 spinel is located at the {111} planes. Lamellae domain and twinned structure are usually observed in LiMn2O4 particles. The occurrence of domain boundary and twin plane are {111} mostly. Forbidden reflections {200}, {420} in the initial powder and 1/2{311} and 1/3{422} superlattice reflections occurred after charging and discharging test reveal LiMn2O4 structure is a violation of space group. [311]/[111] peak ratio in the XRD traces is increase after electrochemical cycling. Fraction of inverse phase increased upon electrochemical cycling. The results for structure evolution under charging and discharging test can be divided into two parts for reversible and irreversible. First, unit cell of cubic spinel contracted upon charging and returned to original after discharging. The lattice constant varies back and forth between 0.824 nm to 0.814 nm for cycle between 3.3 and 4.3 V. LiMn2O4 transits to Li4Mn5O12 and l-MnO2 after fully charging to 4.3 V, which then recovers to cubic spinel LixMnyO4 after discharging to 3.3 V. The structure variations in the cycle of changing and discharging are LiMn2O4 ¡V (Li4Mn5O12 + l-MnO2) ¡V LixMnyO4. And metastable circular or rectangle LiMn2O4 particles observed in the surface can be extracted and inserted Li+ ion upon charging and discharging test. This process is reversible. Second, (1) tetragonal, rhombohedral and triclinic distorted within cubic spinel particles; (2) nanoscale regions of highly disordered lattices observed; (3) amorphous film observed in the powder particle surface; (4) crystalline phase Mn2O3 increased; (5) structure collapse inside the particle and the domain boundary; (6) inverse spinel structure. The structure of LixMn2O4 had distorted upon electrochemical cycling. These results are irreversible.
74

A study of deposition and electrochemical performance of cathode films for intermediate temperature solid oxide fuel cell

Hsu, Ching-Shiung 29 July 2008 (has links)
In this study, deposition of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) oxide films on Gd-doped ceria (CGO) substrates by an electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method was demonstrated for the first time. The electrostatic field employed for directing the aerosol stream towards the substrate was shown to be indispensable for film deposition. The XRD result indicates that a single phase of cubic perovskite was obtained in the calcined films. SEM examination reveals that the electric field strength had a profound effect on film porosity with weaker field resulting in higher porosity. The results of impedance measurement on LSCF//CGO//LSCF cells indicate that the area specific resistance (ASR) values of current LSCF films and their activation energies are comparable to that obtained by conventional sample preparation routes. In view of the simplicity, efficiency and economy of film deposition and the sound electrochemical characteristics of the obtained films manifested in current work, it is concluded that EAUSP method is a promising method for preparation of SOFC electrode films. Besides the EAUSP method, electrostatic spray deposition (ESD) method was also employed to deposit LSCF films. The growth mechanism of LSCF films deposited on silicon wafer was studied by examining a series of films obtained with increasing deposition durations. The results show that the film formation mechanism in the initial stage depends on the deposition temperature, and films with a unique porous structure were obtained when a deposition temperature lower than the boiling point of the precursor solution was used. Deposition parameters were also varied systematically to deposit LSCF cathode films on CGO substrates to obtain symmetrical cells. The microstructure and morphology of obtained films were investigated by X-ray diffraction and SEM, and the area specific resistances of the symmetrical cells measured by electrochemical impedance spectroscopy (EIS). The minimum interfacial ASR value associated with the LSCF cathodes was 0.25 ohm¡Ecm2 at700 ¢XC. NiO-SDC (Sm0.2Ce0.8O1.9)/SDC/LSCF (La0.6Sr0.4Co0.2Fe0.8O3-£_) cells with either single layer or double layer cathode were also fabricated and tested. The single layer LSCF cathode was made by stencil printing while the double layer one was prepared by depositing a thin porous layer on the SDC electrolyte by ESD before stencil printing LSCF. The maximum power density increased from 1.04 to 1.18 Wcm-2 at 700¢XC when the LSCF inter-layer was introduced. The results showed that the ASRs of the cells reduced to half with the addition of the LSCF inter-layer.
75

A High-Voltage Discharging Test Circuit for Cold Cathode Fluorescent Lamps

Lu, Cheng-Lin 26 August 2008 (has links)
In this thesis, a high voltage discharging testing circuit is proposed for cold cathode fluorescent lamps(CCFLs). The testing circuit uses only a single active power switch operating at a high frequency incorporating with reactive components to accumulate a relatively high voltage on the capacitor. This voltage is then stepped up by a transformer to provide the required high voltage for discharging the CCFLs. The circuit has the advantages of simple configuration, less component count, and low cost. In addition, a high power factor at the ac line source can be achieved. The proposed circuit is analyzed based on the mode operation. Accordingly, the design equations are derived to determine the circuit parameters. A prototype is designed and built for testing the 19 inch CCFLs. The discharging tests are made to recognize the malfunctions during the manufacturing process. Moreover, the distributions on the spectral power and chromaticity of lamps can be examined to ensure the product quality.
76

The Effect of Particle Distribution on the Tracing Rays Diffusion in Diffuser Plates

Tseng, Chun-lung 05 September 2008 (has links)
The liquid crystal display is high light, the advantage thin in thickness. In order to reach the thickness thinly, the request good in degree of consistency, it is important to design a qualified mould group in a poor light. This text introduces how to utilize Trace Pro optics to imitate the software , imitating to the diffusion board of the mould group in a poor light of the liquid crystal display , analysis and designing mainly. To the sidelight type mould group in a poor light, go to type in a poor light mould group construct comparatively simple , main optics for reflect board , spread scene , cold cathode tube and arris lens component its directly. The main use of reflection board lying below the mould group among them , in order to collect and reflect the light that come from the light source, make it penetrate above to in a poor light mould group, in order to increase the luminance of screen. Spread slice and function , arris of lens and the arris lens like mere sidelight type in a poor light mould diffusion slice of group, make their even to take in order to raise the luminance of screen light scattering separately. When the mould group in a poor light is thinner and thinner in thickness, brightness its disparity can more and more heavy too, so optics design more and more challenging. This text designs mainly to spread the distribution that the board adds the particle son to with the high degree of consistency, is it probe into in a poor light mould light neat degree that group can appear to come. Design a series of and reply the mould group which reflect the array, software Trace Pro is enabled being used for designing and replying the geometry structure which reflects the array and shut in the simulation optics route , analog quantity examines the result designed, and discuss its characteristic.
77

The effect of nanocatalyst size on performance and degradation in the cathode of proton exchange membrane fuel cells

Groom, Daniel Jeffrey 17 February 2012 (has links)
This thesis discusses the role of initial particle size on the mechanisms of surface area loss of carbon-supported platinum (Pt) electrocatalysts in the cathode of proton exchange membrane fuel cells. Electrocatalyst decay protocols were used to accelerate cathode performance loss for Pt catalysts. Four cathodes with mean platinum particle sizes of 2.1, 3.5, 6.7 and 11.3 nm were evaluated to elucidate the impact of particle size on initial performance and subsequent degradation, when subjected to identical potential cycles. The degradation of Pt electrochemically active surface area (ECA) was significantly greater for 2.1 and 3.5 nm initial sizes compared to 6.7 and 11.3 nm initial sizes. As expected, the ECA loss of the cathodes shows an inverse proportionality with initial particle size. However, the initial performance of the 11.3 nm initial particle size electrode was significantly lower than the three smaller sizes. Thus, an initial Pt particle size of 6.7 nm was identified to offer the ideal balance performance and durability. The current state of standardization in characterizing particle size by transmission electron microscopy (TEM) is also investigated. The result is a standardized protocol for image acquisition and analysis. / text
78

Exploring energy landscapes of solid-state materials : from individual atoms to collective motions

Xiao, Penghao 30 June 2014 (has links)
Chemical reactions can be understood as transitions from basin to basin on a high dimensional potential energy landscape. Varying temperature only changes the average kinetic energy of the system. While applying voltages or external pressures directly tilts the landscape and drives the reactions in desired directions. In solids at relatively low temperature, where the entropy term is approximately invariant, the reaction spontaneity is determined by the energy difference between the reactant and product basins and the reaction rate can be calculated from the barriers in between. To achieve sufficient accuracy to explain experimental observations we are interested in, density functional theory (DFT) is usually employed to calculate energies. There are two types of reactions I have studied: the first type of reaction only involves a few number of individual atoms, corresponding to traveling in a small volume in the high dimensional configuration space; the other type involves a large amount of atoms moving in a concerted pattern, and the distance traveled in the configuration space is significantly longer. The scopes of these two in the energy landscapes are in different scales and thus proper metrics for distance measurements are required. In the first case, I have mainly studied Li/Na behaviors in the cathode materials of secondary batteries. Here resolving the energy landscape step by step with detailed information is possible and useful. By analyzing the energy landscapes with DFT plus the Hubbard U correction, I have explained several phenomena related to the degradation of lithium-rich layered oxides, rate performance of surface modified LiFePO₄, and capacity of vanadium-based fluorophosphates. Predictions on both thermodynamic and kinetic properties of materials are also made based on the calculation results and some are confirmed by experiments. In the second case, my focus is on solid-solid phase transitions. With a tremendous long reaction pathway, examining every possible atomic step is too expensive. By adopting periodic boundary conditions, a small supercell can represent the main feature of the energy landscape in a coarse grained way, where the connection between phases is easier to explore. After the big picture of a phase transition mechanism learned from this simplified model, details along the reaction pathway, like new phase nucleation and growth, could be resolved by using a larger supercell. In the above treatment, two types of variables, the cell vectors and atomic positions, span a generalized configuration space. Special consideration is required to balance these two to keep consistency under different supercells and avoid biases. A solid-state NEB (SSNEB) and a solid-state dimer (SSD) method are then developed to locate saddle points in the generalized configuration space. With the methodology well justified, we are able to efficiently find possible nucleation mechanisms, for examples the CdSe rock salt to wurtzite and Mo A15 to BCC phase transitions. SSNEB is also applied in studying phases transitions under pressures, including the graphite to diamond, and CaIrO₃ perovskite to post-perovskite transitions. Combined with the adaptive kinetic Monte Carlo (AKMC) algorithm, SSD shows the ability to find new polymorphs of CdSe and the connecting barriers between them. / text
79

Hollow-electrode pulsed plasma deposition of titanium and carbon thin films

Hyde, Robert H 01 June 2006 (has links)
This thesis presents a study of a pulsed distributed arc plasma deposition method that has been developed to produce highly ionized pulsed plasma plumes of metallic species in the presence of a low-pressure inert or reactive gas glow discharge. A pulse-forming network (PFN) is used to form a transient electrical discharge in a hollow electrode which is triggered by two different methods; a pulsed CO2 laser or a pulsed high voltage glow discharge. With the PFN charged to a voltage of 70 - 100 VDC, current pulses with peak currents up to 3 kA and pulse widths as long 3.7 milliseconds have been reached. A detailed treatment of the influence of process parameters, such as the PFN discharge energy and ambient gas pressure and type, on the plasma properties is presented. These experiments also demonstrated a higher on-axis growth rate of carbon in an ambient of nitrogen than in argon. The higher argon mass leads to broader plasma expansion producing broader deposition profiles which results in lower on-axis growth rates. Deposition rates of 3.5 angstrom/pulse for carbon and 2.1 angstrom/pulse for titanium have been achieved. Thickness profiles and the morphology of carbon films and titanium films deposited by this method, which utilize the energetic advantage of ions in film formation allowing reduced substrate temperatures and good adhesion, are presented.
80

Micro-Processor to CRT interface

Mery, Hector Ernesto, 1941- January 1976 (has links)
No description available.

Page generated in 0.0329 seconds