• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ion pumps in Drosophila hearing

Zora, Betul 01 July 2015 (has links)
Ion pumps establish homeostasis across the membranes of living cells. Hearing is a mechanotransduction event that takes place in a closed compartment containing a fluid high in K+ concentrations. In Drosophila melanogaster, this closed compartment is formed by a scolopale cell that wraps around the dendrite of sensory neurons. The receptor lymph is maintained by the scolopale cell. The lumenal membrane of the scolopale cell is the wall of the compartment containing the receptor lymph, the scolopale space. The ablumenal membrane of the scolopale cell creates the border of the scolopidium. The Na/K pump is located on the ablumenal membrane of the scolopale cell, bringing K+ into the scolopale cell cytoplasm and extruding K electrogenically (Roy et al, 2013). We explored other primary and secondary ion pumps that are involved in creating a K+-rich lumen in the Malpighian tubule (Day et al, 2008; Rodan et al, 2012). We used RNAi technology to knockdown one gene at a time and electrophysiology to measure a sound evoked potential (SEP) that reflects the fly’s ability to hear. We found that knocking down V-ATPase, a proton pump, subunits involved in proton extrusion significantly reduces the SEP of knockdown flies. The involvement of cation chloride cotransporters (CCCs) and cation proton antiporter (CPAs), both secondary ion pumps that use the gradients created by the Na/K pump and V-ATPase respectively to pump other ions up their gradient, is less clear. We found that knocking down Nhe3, a CPA, significantly reduced the SEP when knocked down in the scolopale cell, suggesting it as a partner to the V-ATPase. Knocking down CG31547, a CCC, statistically increased the SEP, possibly a type1 statistical error.
2

Organophosphorus Pesticide Exposure Effects on Neurobehavioral Development of Zebrafish and Characterization of Developmental Switch Between Two Cation-chloride Cotransporters (zfnkcc1 and zfkcc2)

Yen, Jerry January 2012 (has links)
<p>Organophosphorus pesticides (OPs) are neuroactive compounds that can affect the development of the nervous system and behavior. Using zebrafish, we compared the effectiveness of three different OPs, chlorpyrifos (CPF), diazinon (DZN) and parathion (PA) on survival, AChE inhibition and larval motility. We conclude that at equimolar concentrations CPF is the most effective OP of the three tested. 300nM CPF inhibited AChE when measured at 5 days post fertilization (dpf) by 80%, which correlated to a 35% decrease in larval motility when measured at 6 dpf. </p><p>We isolated the cDNA of <italic>zfkcc2</italic>, which encodes for an important cation-chloride cotransporter responsible for establishing a chloride gradient that allows for the neurotransmitter GABA to become inhibitory for a subset of neurons. By isolating the cDNA of <italic>zfkcc2</italic>, we were able to characterize its expression pattern up to 4 dpf. Using qRT-PCR, we showed that the expression of <italic>zfkcc2</italic> rises from 2 to 96 hours post fertilization (hpf). The expression of <italic>zfkcc2</italic> is found at 1 dpf in the forebrain, midbrain and hindbrain in a distinct pattern. By 3 dpf, zfkcc2 expression is found throughout most of the developing zebrafish brain. We were then able to characterize the expression pattern of zfnkcc1, which encodes for a cation-chloride cotransporter that works opposite to <italic>zfkcc2</italic> and establishes a chloride gradient allowing GABA to be excitatory during development. Expression of <italic>zfnkcc1</italic> is found at 1 dpf throughout most of the developing zebrafish head including in some non-neural tissue, but appears concentrated to the otic vesicle at 3 dpf. Using double in situ hybridization, we investigated the nature of the developmental switch from zfnkcc1 to zfkcc2 by looking at regions where there was an interaction between both genes' expression patterns in the developing zebrafish nervous system. </p><p>We preliminarily examined how affecting nicotinic signaling with exposures to nicotinic agonists/antagonists can affect the expression of <italic>zfnkcc2</italic> and <italic>zfkcc2</italic>. While there were no apparent changes in the expression pattern from any of the exposures at 2 dpf, we found that by 3 dpf nicotine and CPF exposures resulted in an incomplete expression pattern for <italic>zfkcc2</italic> that seemed to be delayed. However, the expression of <italic>zfnkcc1</italic> at the otic vesicle was unaffected by exposure. </p><p>Our results suggest that disrupting nicotinic signaling during development can affect the expression of an important cation-chloride cotransporter, <italic>zfkcc2</italic>, that plays a major role in establishing the necessary chloride gradient for the proper functioning of GABA during development. Future studies should focus on investigating the nature of the developmental switch between <italic>zfnkcc1</italic> and <italic>zfkcc2</italic> to see if the possibility of their regulation being coupled is a target for exposures.</p> / Dissertation
3

Expression des cotransporteurs cation-chlorure KCC2 et NKCC1 au cours du développement de la moelle épinière de l’opossum Monodelphis domestica

Phan, Ha-Loan 08 1900 (has links)
L’inhibition est nécessaire à la génération d’outputs coordonnés entre muscles antagonistes lors de la locomotion. Une baisse de la concentration neuronale en ions chlorure au cours du développement des mammifères conduit à l’émergence de l’inhibition. Cette baisse repose sur l’équilibre entre deux cotransporteurs cation-chlorure, KCC2 et NKCC1. KCC2 expulse Cl- de la cellule alors que NKCC1 pompe Cl- dans la cellule. L’opossum Monodelphis domestica naît dans un état très immature. Le seul comportement locomoteur qu’il présente à la naissance consiste en des mouvements rythmiques et alternés des membres antérieurs pour grimper le long du ventre de la mère vers une tétine. Les membres postérieurs sont des bourgeons immobiles dont le développement est en grande partie postnatal. Pour cette raison, cette espèce constitue un modèle idéal pour l’étude du développement locomoteur. Afin d’étudier les mécanismes conduisant à l’émergence de l’inhibition durant le développement moteur, nous avons décrit l’expression développementale de KCC2 et NKCC1 chez l’opossum postnatal par immunohistochimie au niveau des renflements spinaux. Les motoneurones et afférences primaires ont été identifiés en utilisant un marquage rétrograde au TRDA. Le marquage pour KCC2 et NKCC1 est détecté dans la moelle épinière ventrale dans la matière grise et blanche présomptive dès la naissance, ce qui suggère que l’inhibition serait déjà mise en place avant la naissance, permettant subséquemment l’alternance des membres antérieurs observée chez les nouveau-nés. L’expression développementale de KCC2 et NKCC1 suit des gradients ventrodorsal et médiolatéral, tels qu’observés chez les rongeurs (rats et souris). Le patron mature d’expression de ces cotransporteurs est observé aux alentours de la 5ème semaine postnatale lorsque la locomotion de l’opossum est mature. Enfin, entre la naissance et P5, les dendrites exprimant KCC2 au niveau de la corne dorsale sont retrouvées en apposition aux afférences primaires ce qui suggère un rôle de KCC2 dans la formation des circuits sensori-moteurs. / Inhibition is necessary to generate coordinated outputs between antagonistic muscles during locomotion. Inhibition is set by a lowering in neuronal chloride concentration during mammalian development. This lowering relies on the proper balance between two cation-chloride cotransporters, KCC2 and NKCC1. KCC2 extrudes Cl- out of the cell while NKCC1 pumps Cl- into the cell. The opossum Monodelphis domestica is born at a very rudimentary stage of development. Newborn opossums show rhythmic and alternate movements of the forelimbs as they crawl on the mother's belly to a nipple. The hindlimbs are immobile paddle-shaped buds and their development is mostly postnatal. Thus, this species is an ideal model to study motor development. In order to investigate the mechanisms involved in the appearance of inhibition during motor development, we described the developmental expression of KCC2 and NKCC1 on postnatal opossums using immunohistochemistry in the spinal cord enlargements. Motoneurons and primary sensory afferents were identified using retrograde labeling with TRDA. Immunolabeling for both KCC2 and NKCC1 is detected in the ventral spinal cord in the presumptive grey and white matter from birth on, suggesting that the development of inhibition begins before birth, enabling the alternate movements exhibited by the newborns. The developmental expression of KCC2 and NKCC1 follows ventrodorsal and mediolateral gradients, similar to those demonstrated in rodents (rats and mice). The mature pattern for both cotransporters is observed around the 5th week at a time when opossums demonstrate mature patterns of locomotion. Between birth and P5, dendrites expressing KCC2 in the dorsal horn superimpose on the primary afferents, suggesting a role for KCC2 in the establishment of sensorimotor circuits.
4

Expression des cotransporteurs cation-chlorure KCC2 et NKCC1 au cours du développement de la moelle épinière de l’opossum Monodelphis domestica

Phan, Ha-Loan 08 1900 (has links)
L’inhibition est nécessaire à la génération d’outputs coordonnés entre muscles antagonistes lors de la locomotion. Une baisse de la concentration neuronale en ions chlorure au cours du développement des mammifères conduit à l’émergence de l’inhibition. Cette baisse repose sur l’équilibre entre deux cotransporteurs cation-chlorure, KCC2 et NKCC1. KCC2 expulse Cl- de la cellule alors que NKCC1 pompe Cl- dans la cellule. L’opossum Monodelphis domestica naît dans un état très immature. Le seul comportement locomoteur qu’il présente à la naissance consiste en des mouvements rythmiques et alternés des membres antérieurs pour grimper le long du ventre de la mère vers une tétine. Les membres postérieurs sont des bourgeons immobiles dont le développement est en grande partie postnatal. Pour cette raison, cette espèce constitue un modèle idéal pour l’étude du développement locomoteur. Afin d’étudier les mécanismes conduisant à l’émergence de l’inhibition durant le développement moteur, nous avons décrit l’expression développementale de KCC2 et NKCC1 chez l’opossum postnatal par immunohistochimie au niveau des renflements spinaux. Les motoneurones et afférences primaires ont été identifiés en utilisant un marquage rétrograde au TRDA. Le marquage pour KCC2 et NKCC1 est détecté dans la moelle épinière ventrale dans la matière grise et blanche présomptive dès la naissance, ce qui suggère que l’inhibition serait déjà mise en place avant la naissance, permettant subséquemment l’alternance des membres antérieurs observée chez les nouveau-nés. L’expression développementale de KCC2 et NKCC1 suit des gradients ventrodorsal et médiolatéral, tels qu’observés chez les rongeurs (rats et souris). Le patron mature d’expression de ces cotransporteurs est observé aux alentours de la 5ème semaine postnatale lorsque la locomotion de l’opossum est mature. Enfin, entre la naissance et P5, les dendrites exprimant KCC2 au niveau de la corne dorsale sont retrouvées en apposition aux afférences primaires ce qui suggère un rôle de KCC2 dans la formation des circuits sensori-moteurs. / Inhibition is necessary to generate coordinated outputs between antagonistic muscles during locomotion. Inhibition is set by a lowering in neuronal chloride concentration during mammalian development. This lowering relies on the proper balance between two cation-chloride cotransporters, KCC2 and NKCC1. KCC2 extrudes Cl- out of the cell while NKCC1 pumps Cl- into the cell. The opossum Monodelphis domestica is born at a very rudimentary stage of development. Newborn opossums show rhythmic and alternate movements of the forelimbs as they crawl on the mother's belly to a nipple. The hindlimbs are immobile paddle-shaped buds and their development is mostly postnatal. Thus, this species is an ideal model to study motor development. In order to investigate the mechanisms involved in the appearance of inhibition during motor development, we described the developmental expression of KCC2 and NKCC1 on postnatal opossums using immunohistochemistry in the spinal cord enlargements. Motoneurons and primary sensory afferents were identified using retrograde labeling with TRDA. Immunolabeling for both KCC2 and NKCC1 is detected in the ventral spinal cord in the presumptive grey and white matter from birth on, suggesting that the development of inhibition begins before birth, enabling the alternate movements exhibited by the newborns. The developmental expression of KCC2 and NKCC1 follows ventrodorsal and mediolateral gradients, similar to those demonstrated in rodents (rats and mice). The mature pattern for both cotransporters is observed around the 5th week at a time when opossums demonstrate mature patterns of locomotion. Between birth and P5, dendrites expressing KCC2 in the dorsal horn superimpose on the primary afferents, suggesting a role for KCC2 in the establishment of sensorimotor circuits.

Page generated in 0.1236 seconds