• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Interaction Between Cavitation and Wear in Enclosed Spaces with Oscillating Boundaries

Whaley, Erica Lee 21 May 2019 (has links)
No description available.
2

Investigation of the cavitation mechanism and erosion of submerged high pressure water jets /

Qin, Zongyi. January 2003 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2004. / Includes bibliography.
3

Reactive Cavitation Erosion: A New Materials Processing Technique for Nanomaterials Production

January 2019 (has links)
archives@tulane.edu / Reactive Cavitation Erosion (RCE), a new materials processing technique for the production of functionalized nanomaterials in which acoustic cavitation erosion is performed in a reactive medium, is described herein. Background material on acoustic cavitation erosion in the form of a literature review is presented. The effects of fluid properties and ambient pressure on the bubble dynamics at the high acoustic pressures commensurate with RCE are studied. The solutions to the Rayleigh-Plesset equation (RPE) and Keller-Miksis equation (KME) are compared. It is shown that to a first approximation, the RPE and KME give similar results. Analyses of the RPE solutions for real-world fluids reveal that many fluids result in cavitation intensity comparable to or greater than that of water. The groundwork for future modelling of RCE was established through the development of the Hemispherical Pit Model (HPM). The HPM is based upon a simple geometrical model of the volume loss process and contains parameters that may be more directly related to material properties and experimental parameters. Formation of functionalized clinoatacamite nanoparticles is achieved through Reactive Cavitation Erosion of copper discs in a 1 M guanidine hydrochloride solution. From analyses, the mechanism for formation of the clinoatacamite proceeded from ablation of metallic copper from the disc surface followed by subsequent reactions in solution. / 1 / Jeremy William Wright
4

Experimental Simulation of Cavitation Erosion

Hedlund, Nina January 2014 (has links)
No description available.
5

Visualization of cavitation and investigation of cavitation erosion in a valve

Krahl, Dominik, Weber, Jürgen, Fuchs, Maik 27 April 2016 (has links) (PDF)
Avoiding cavitation and especially cavitation erosion are tasks, which have to be considered when working with hydraulics. State of the art is the assessment of the risk of erosion by component testing or to completely avoid cavitation by means of CFD. Another reliable method to assess the risk of cavitation erosion is until now not available. This paper deals with this problem and delivers comparative values for a later method development. In a first step the cavitation of a poppet valve, which controls a methanol flow, is visualized. The resulting three cavitation appearances are deeply examined. After that the results of long-term tests at different operation conditions are presented. A poppet surface analysis following each experiment has shown different types of surface attacks. As a result of this work it is shown that both cavitation appearance and surface attack are strongly influenced by the temperature dependent air solubility of the liquid.
6

Contribution à la prévision de l'érosion de cavitation à partir de simulations numériques : proposition d'un modèle à deux échelles pour l'estimation du chargement imposé en paroi par le fluide / Contribution to the prediction of cavitation erosion from numerical simulations : proposition of a two scales model to estimate the charge imposed by the fluid

Krumenacker, Laurent 29 January 2015 (has links)
Lors du fonctionnement d'une installation hydraulique, l'apparition de zone de cavitation dans l'écoulement peut entraîner un endommagement important sur la surface des matériaux. La quantification de l'intensité de cavitation sur les composants hydrauliques serait utile à la fois pour mieux concevoir les nouveaux équipements en projet, mais aussi pour améliorer la conduite et optimiser la maintenance des matériels existants. Au vu du grand nombre de paramètres régissant les écoulements cavitants, l'élaboration de lois de similitudes universelles à partir d'expériences est délicate. Avec l'augmentation des moyens de calculs, la simulation numérique est un outil pour étudier ce phénomène sur des géométries variées. La principale difficulté de cette démarche réside dans la différence d'échelles existant entre les simulations numériques U-RANS servant à simuler l'écoulement cavitant et les mécanismes d'implosion de bulles jugés responsables de l'endommagement sur le solide. La méthode proposée dans ce manuscrit s'appuie sur un post-traitement des simulations U-RANS afin de caractériser une distribution de bulles et de simuler leurs comportements à de plus petites échelles spatiales et temporelles. Dans un premier temps, notre travail consiste à expliciter les équations locales de conservation de masse, de quantité de mouvement et d'énergie pour un écoulement liquide/gaz comprenant deux espèces eau/air. Ce travail mène à l'élaboration de grandeurs de mélange prenant notamment en compte la présence de gaz incondensables au sein du fluide. Des hypothèses permettent de rendre ce système équivalent à ceux, utilisant une approche homogène, implémentés dans les codes de simulations d'écoulements cavitants instationnaires développés précédemment au laboratoire. La caractérisation des populations de bulles effectuée par le post-traitement prend ainsi en considération à la fois la tension superficielle et la présence de gaz incondensables. Dans un deuxième temps, l'élaboration d'un code de calcul permettant la simulation de la dynamique d'un nuage de bulles est débutée. Ce dernier a pour ambition de tenir compte à la fois des interactions entre les bulles et des déformations non sphériques que celles-ci peuvent subir à l'aide d'une méthode potentielle. Des premiers résultats de simulations sont présentés dans ce manuscrit et permettent de tenir compte de faibles déformations des bulles. La dernière étape de ce travail consiste à proposer une méthode de chaînage entre ces deux échelles en initialisant le calcul de dynamique de bulles à l'aide des résultats du calcul U-RANS. L'énergie émise lors de l'implosion des bulles et impactant la surface solide est ainsi calculée, caractérisant de ce fait le chargement imposé par l'écoulement sur le matériau. Cette méthode est par la suite appliquée sur différentes géométries en comparant à chaque fois les résultats obtenus à des expériences. Nous comparons également nos résultats à des méthodes précédemment établies au sein du laboratoire afin d'évaluer la pertinence de cette approche. / During the life's cycle of a hydraulic installation, the occurrence of cavitation can cause significant damages on the material's surface. The quantification of the cavitation intensity in different geometry can be useful to get better designs for new installations, but also to improve the operating and to optimize maintenance of existing equipments. The development of universal laws of similarity from experiments is difficult due to the large number of parameters governing cavitating flows. With the increase of computational performance, numerical simulations offer the opportunity to study this phenomenon in various geometries. The main difficulty of this approach is the scale's difference existing between the numerical simulations U-RANS used to calculate the cavitating flow and mechanisms of bubble's collapse held responsible for damages on the solid. The proposed method in this thesis is based on a textbf{post-treatment} of the textbf{U-RANS} simulations to characterize a distribution of bubbles and to simulate their behavior at lower spatial and temporal scales. Our first objective is to make explicit a system of equations corresponding to phenomena occurring locally in the two-phase flow. This work leads to the development of mixture variables taking into account the presence of non-condensable gases in the fluid. Assumptions are taken to make the system, after using the Reynolds averaging procedure, equivalent to those, using a homogeneous approach, implemented in the unsteady cavitating flows solvers previously developed in the laboratory. The characterization of bubbles made by this post-treatment takes into account both the surface tension and the presence of non-condensable gases. The development of a solver for the simulation of the dynamic of a bubble cloud is started. It aims to take into account both the interactions between bubbles and non-spherical deformations with a potential method. First results of these simulations are presented and small non-spherical deformations occurring during the collapse can be observed. Finally, we propose a chained method between these two systems initializing the bubble dynamic solver with results of U-RANS simulations. The energy emitted during the implosion of bubbles impacting the solid surface is calculated. So the aggressiveness of the flow on the material can be characterized. We apply this method on different flows to compare numerical and experimental results.
7

Contribution à la prévision de l'érosion de cavitation à partir de simulations numériques : proposition d'un modèle à deux échelles pour l'estimation du chargement imposé en paroi par le fluide / Contribution to the prediction of cavitation erosion from numerical simulations : proposition of a two scales model to estimate the charge imposed by the fluid

Krumenacker, Laurent 29 January 2015 (has links)
Lors du fonctionnement d'une installation hydraulique, l'apparition de zone de cavitation dans l'écoulement peut entraîner un endommagement important sur la surface des matériaux. La quantification de l'intensité de cavitation sur les composants hydrauliques serait utile à la fois pour mieux concevoir les nouveaux équipements en projet, mais aussi pour améliorer la conduite et optimiser la maintenance des matériels existants. Au vu du grand nombre de paramètres régissant les écoulements cavitants, l'élaboration de lois de similitudes universelles à partir d'expériences est délicate. Avec l'augmentation des moyens de calculs, la simulation numérique est un outil pour étudier ce phénomène sur des géométries variées. La principale difficulté de cette démarche réside dans la différence d'échelles existant entre les simulations numériques U-RANS servant à simuler l'écoulement cavitant et les mécanismes d'implosion de bulles jugés responsables de l'endommagement sur le solide. La méthode proposée dans ce manuscrit s'appuie sur un post-traitement des simulations U-RANS afin de caractériser une distribution de bulles et de simuler leurs comportements à de plus petites échelles spatiales et temporelles. Dans un premier temps, notre travail consiste à expliciter les équations locales de conservation de masse, de quantité de mouvement et d'énergie pour un écoulement liquide/gaz comprenant deux espèces eau/air. Ce travail mène à l'élaboration de grandeurs de mélange prenant notamment en compte la présence de gaz incondensables au sein du fluide. Des hypothèses permettent de rendre ce système équivalent à ceux, utilisant une approche homogène, implémentés dans les codes de simulations d'écoulements cavitants instationnaires développés précédemment au laboratoire. La caractérisation des populations de bulles effectuée par le post-traitement prend ainsi en considération à la fois la tension superficielle et la présence de gaz incondensables. Dans un deuxième temps, l'élaboration d'un code de calcul permettant la simulation de la dynamique d'un nuage de bulles est débutée. Ce dernier a pour ambition de tenir compte à la fois des interactions entre les bulles et des déformations non sphériques que celles-ci peuvent subir à l'aide d'une méthode potentielle. Des premiers résultats de simulations sont présentés dans ce manuscrit et permettent de tenir compte de faibles déformations des bulles. La dernière étape de ce travail consiste à proposer une méthode de chaînage entre ces deux échelles en initialisant le calcul de dynamique de bulles à l'aide des résultats du calcul U-RANS. L'énergie émise lors de l'implosion des bulles et impactant la surface solide est ainsi calculée, caractérisant de ce fait le chargement imposé par l'écoulement sur le matériau. Cette méthode est par la suite appliquée sur différentes géométries en comparant à chaque fois les résultats obtenus à des expériences. Nous comparons également nos résultats à des méthodes précédemment établies au sein du laboratoire afin d'évaluer la pertinence de cette approche. / During the life's cycle of a hydraulic installation, the occurrence of cavitation can cause significant damages on the material's surface. The quantification of the cavitation intensity in different geometry can be useful to get better designs for new installations, but also to improve the operating and to optimize maintenance of existing equipments. The development of universal laws of similarity from experiments is difficult due to the large number of parameters governing cavitating flows. With the increase of computational performance, numerical simulations offer the opportunity to study this phenomenon in various geometries. The main difficulty of this approach is the scale's difference existing between the numerical simulations U-RANS used to calculate the cavitating flow and mechanisms of bubble's collapse held responsible for damages on the solid. The proposed method in this thesis is based on a textbf{post-treatment} of the textbf{U-RANS} simulations to characterize a distribution of bubbles and to simulate their behavior at lower spatial and temporal scales. Our first objective is to make explicit a system of equations corresponding to phenomena occurring locally in the two-phase flow. This work leads to the development of mixture variables taking into account the presence of non-condensable gases in the fluid. Assumptions are taken to make the system, after using the Reynolds averaging procedure, equivalent to those, using a homogeneous approach, implemented in the unsteady cavitating flows solvers previously developed in the laboratory. The characterization of bubbles made by this post-treatment takes into account both the surface tension and the presence of non-condensable gases. The development of a solver for the simulation of the dynamic of a bubble cloud is started. It aims to take into account both the interactions between bubbles and non-spherical deformations with a potential method. First results of these simulations are presented and small non-spherical deformations occurring during the collapse can be observed. Finally, we propose a chained method between these two systems initializing the bubble dynamic solver with results of U-RANS simulations. The energy emitted during the implosion of bubbles impacting the solid surface is calculated. So the aggressiveness of the flow on the material can be characterized. We apply this method on different flows to compare numerical and experimental results.
8

Modeling the Performance and Failure of Elastomeric Coatings Under Erosive Cavitating Flows

January 2016 (has links)
abstract: Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments. In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code. Combining the distribution of microscopic impact loads and finite element modeling, a semi-quantitative predictive framework is created to calculate the energy dissipation within the coating which can further the understanding of temperature induced coating failures. The influence of coating thickness and elastomer rheology on the dissipation of impact energies experienced in cavitating flows has also been explored. The logarithmic formulation has many desired features for the polyurea constitutive model, such as objectivity, integrability, and additive decomposition compatibility. A review and discussion on the kinematics in large deformation, including a comparison between Lagrangian and Eulerian descriptions, are presented to explain the issues in building rate-dependent constitutive models in finite strains. When comparing the logarithmic rate with other conventional rates in test examples, the logarithmic rate shows a better conservation of objectivity and integrability. The modeling framework was validated by comparing predictions against temperatures measured within coatings subjected to a cavitating jet. Both the experiments and models show that the temperatures generated, even under mild flow conditions, raise the coating temperature by a significant amount, suggesting that the failure of these coatings under more aggressive flows is thermally induced. The models show that thin polyurea coatings synthesized with shorter molecular weight soft segments dissipate significantly less energy per impact and conduct heat more efficiently. This work represents an important step toward understanding thermally induced failure in elastomers subjected to cavitating flows, which provides a foundation for design and optimization of coatings with enhanced erosion resistance. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2016
9

Zkoušky kavitační eroze kavitujícím paprskem / Cavitation testing using cavitating jet

Rovder, Juraj January 2021 (has links)
This thesis deals with the issue of cavitation and its effects. In this context, it describes the mechanism of origin and implosion of cavities and cavitation regimes. It lists various types of hydrodynamic cavitation. It presents the Rayleight-Plesset equation and describes micro jet. It also highlights cavitation erosion and the effects of cavitation on some types of materials. It deals with three types of cavitation resistance testing, namely cavitation tunnels, a vibrating cavitation system, supported by the ASTM G32 standard, and last but not least, cavitation nozzles, which follow the ASTM G134-17 standard. In correlation with cavitation nozzles, it frames its four basic parameters, which are stand of distance, the cavitation number, the speed of sound and the geometry of the nozzle. At the end of the theoretical part it characterizes the construction of test bench. The practical part is focused on performing the experiment. It first presents the procedure for carrying out the experiment and then evaluates this experiment. Part of the evaluation is the visual observation of selected samples of AlCu4Mg1Mn1 material and the monitoring of cavitation erosion on specific samples. First, these data are processed in the form of graphs and tables. It uses a microscope as a tool for detailed observation of samples. The conclusion of the practical part is devoted to the evaluation of the experiment.
10

Visualization of cavitation and investigation of cavitation erosion in a valve

Krahl, Dominik, Weber, Jürgen, Fuchs, Maik January 2016 (has links)
Avoiding cavitation and especially cavitation erosion are tasks, which have to be considered when working with hydraulics. State of the art is the assessment of the risk of erosion by component testing or to completely avoid cavitation by means of CFD. Another reliable method to assess the risk of cavitation erosion is until now not available. This paper deals with this problem and delivers comparative values for a later method development. In a first step the cavitation of a poppet valve, which controls a methanol flow, is visualized. The resulting three cavitation appearances are deeply examined. After that the results of long-term tests at different operation conditions are presented. A poppet surface analysis following each experiment has shown different types of surface attacks. As a result of this work it is shown that both cavitation appearance and surface attack are strongly influenced by the temperature dependent air solubility of the liquid.

Page generated in 0.1507 seconds