• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la prévision de l'érosion de cavitation à partir de simulations numériques : proposition d'un modèle à deux échelles pour l'estimation du chargement imposé en paroi par le fluide / Contribution to the prediction of cavitation erosion from numerical simulations : proposition of a two scales model to estimate the charge imposed by the fluid

Krumenacker, Laurent 29 January 2015 (has links)
Lors du fonctionnement d'une installation hydraulique, l'apparition de zone de cavitation dans l'écoulement peut entraîner un endommagement important sur la surface des matériaux. La quantification de l'intensité de cavitation sur les composants hydrauliques serait utile à la fois pour mieux concevoir les nouveaux équipements en projet, mais aussi pour améliorer la conduite et optimiser la maintenance des matériels existants. Au vu du grand nombre de paramètres régissant les écoulements cavitants, l'élaboration de lois de similitudes universelles à partir d'expériences est délicate. Avec l'augmentation des moyens de calculs, la simulation numérique est un outil pour étudier ce phénomène sur des géométries variées. La principale difficulté de cette démarche réside dans la différence d'échelles existant entre les simulations numériques U-RANS servant à simuler l'écoulement cavitant et les mécanismes d'implosion de bulles jugés responsables de l'endommagement sur le solide. La méthode proposée dans ce manuscrit s'appuie sur un post-traitement des simulations U-RANS afin de caractériser une distribution de bulles et de simuler leurs comportements à de plus petites échelles spatiales et temporelles. Dans un premier temps, notre travail consiste à expliciter les équations locales de conservation de masse, de quantité de mouvement et d'énergie pour un écoulement liquide/gaz comprenant deux espèces eau/air. Ce travail mène à l'élaboration de grandeurs de mélange prenant notamment en compte la présence de gaz incondensables au sein du fluide. Des hypothèses permettent de rendre ce système équivalent à ceux, utilisant une approche homogène, implémentés dans les codes de simulations d'écoulements cavitants instationnaires développés précédemment au laboratoire. La caractérisation des populations de bulles effectuée par le post-traitement prend ainsi en considération à la fois la tension superficielle et la présence de gaz incondensables. Dans un deuxième temps, l'élaboration d'un code de calcul permettant la simulation de la dynamique d'un nuage de bulles est débutée. Ce dernier a pour ambition de tenir compte à la fois des interactions entre les bulles et des déformations non sphériques que celles-ci peuvent subir à l'aide d'une méthode potentielle. Des premiers résultats de simulations sont présentés dans ce manuscrit et permettent de tenir compte de faibles déformations des bulles. La dernière étape de ce travail consiste à proposer une méthode de chaînage entre ces deux échelles en initialisant le calcul de dynamique de bulles à l'aide des résultats du calcul U-RANS. L'énergie émise lors de l'implosion des bulles et impactant la surface solide est ainsi calculée, caractérisant de ce fait le chargement imposé par l'écoulement sur le matériau. Cette méthode est par la suite appliquée sur différentes géométries en comparant à chaque fois les résultats obtenus à des expériences. Nous comparons également nos résultats à des méthodes précédemment établies au sein du laboratoire afin d'évaluer la pertinence de cette approche. / During the life's cycle of a hydraulic installation, the occurrence of cavitation can cause significant damages on the material's surface. The quantification of the cavitation intensity in different geometry can be useful to get better designs for new installations, but also to improve the operating and to optimize maintenance of existing equipments. The development of universal laws of similarity from experiments is difficult due to the large number of parameters governing cavitating flows. With the increase of computational performance, numerical simulations offer the opportunity to study this phenomenon in various geometries. The main difficulty of this approach is the scale's difference existing between the numerical simulations U-RANS used to calculate the cavitating flow and mechanisms of bubble's collapse held responsible for damages on the solid. The proposed method in this thesis is based on a textbf{post-treatment} of the textbf{U-RANS} simulations to characterize a distribution of bubbles and to simulate their behavior at lower spatial and temporal scales. Our first objective is to make explicit a system of equations corresponding to phenomena occurring locally in the two-phase flow. This work leads to the development of mixture variables taking into account the presence of non-condensable gases in the fluid. Assumptions are taken to make the system, after using the Reynolds averaging procedure, equivalent to those, using a homogeneous approach, implemented in the unsteady cavitating flows solvers previously developed in the laboratory. The characterization of bubbles made by this post-treatment takes into account both the surface tension and the presence of non-condensable gases. The development of a solver for the simulation of the dynamic of a bubble cloud is started. It aims to take into account both the interactions between bubbles and non-spherical deformations with a potential method. First results of these simulations are presented and small non-spherical deformations occurring during the collapse can be observed. Finally, we propose a chained method between these two systems initializing the bubble dynamic solver with results of U-RANS simulations. The energy emitted during the implosion of bubbles impacting the solid surface is calculated. So the aggressiveness of the flow on the material can be characterized. We apply this method on different flows to compare numerical and experimental results.
2

Contribution à la prévision de l'érosion de cavitation à partir de simulations numériques : proposition d'un modèle à deux échelles pour l'estimation du chargement imposé en paroi par le fluide / Contribution to the prediction of cavitation erosion from numerical simulations : proposition of a two scales model to estimate the charge imposed by the fluid

Krumenacker, Laurent 29 January 2015 (has links)
Lors du fonctionnement d'une installation hydraulique, l'apparition de zone de cavitation dans l'écoulement peut entraîner un endommagement important sur la surface des matériaux. La quantification de l'intensité de cavitation sur les composants hydrauliques serait utile à la fois pour mieux concevoir les nouveaux équipements en projet, mais aussi pour améliorer la conduite et optimiser la maintenance des matériels existants. Au vu du grand nombre de paramètres régissant les écoulements cavitants, l'élaboration de lois de similitudes universelles à partir d'expériences est délicate. Avec l'augmentation des moyens de calculs, la simulation numérique est un outil pour étudier ce phénomène sur des géométries variées. La principale difficulté de cette démarche réside dans la différence d'échelles existant entre les simulations numériques U-RANS servant à simuler l'écoulement cavitant et les mécanismes d'implosion de bulles jugés responsables de l'endommagement sur le solide. La méthode proposée dans ce manuscrit s'appuie sur un post-traitement des simulations U-RANS afin de caractériser une distribution de bulles et de simuler leurs comportements à de plus petites échelles spatiales et temporelles. Dans un premier temps, notre travail consiste à expliciter les équations locales de conservation de masse, de quantité de mouvement et d'énergie pour un écoulement liquide/gaz comprenant deux espèces eau/air. Ce travail mène à l'élaboration de grandeurs de mélange prenant notamment en compte la présence de gaz incondensables au sein du fluide. Des hypothèses permettent de rendre ce système équivalent à ceux, utilisant une approche homogène, implémentés dans les codes de simulations d'écoulements cavitants instationnaires développés précédemment au laboratoire. La caractérisation des populations de bulles effectuée par le post-traitement prend ainsi en considération à la fois la tension superficielle et la présence de gaz incondensables. Dans un deuxième temps, l'élaboration d'un code de calcul permettant la simulation de la dynamique d'un nuage de bulles est débutée. Ce dernier a pour ambition de tenir compte à la fois des interactions entre les bulles et des déformations non sphériques que celles-ci peuvent subir à l'aide d'une méthode potentielle. Des premiers résultats de simulations sont présentés dans ce manuscrit et permettent de tenir compte de faibles déformations des bulles. La dernière étape de ce travail consiste à proposer une méthode de chaînage entre ces deux échelles en initialisant le calcul de dynamique de bulles à l'aide des résultats du calcul U-RANS. L'énergie émise lors de l'implosion des bulles et impactant la surface solide est ainsi calculée, caractérisant de ce fait le chargement imposé par l'écoulement sur le matériau. Cette méthode est par la suite appliquée sur différentes géométries en comparant à chaque fois les résultats obtenus à des expériences. Nous comparons également nos résultats à des méthodes précédemment établies au sein du laboratoire afin d'évaluer la pertinence de cette approche. / During the life's cycle of a hydraulic installation, the occurrence of cavitation can cause significant damages on the material's surface. The quantification of the cavitation intensity in different geometry can be useful to get better designs for new installations, but also to improve the operating and to optimize maintenance of existing equipments. The development of universal laws of similarity from experiments is difficult due to the large number of parameters governing cavitating flows. With the increase of computational performance, numerical simulations offer the opportunity to study this phenomenon in various geometries. The main difficulty of this approach is the scale's difference existing between the numerical simulations U-RANS used to calculate the cavitating flow and mechanisms of bubble's collapse held responsible for damages on the solid. The proposed method in this thesis is based on a textbf{post-treatment} of the textbf{U-RANS} simulations to characterize a distribution of bubbles and to simulate their behavior at lower spatial and temporal scales. Our first objective is to make explicit a system of equations corresponding to phenomena occurring locally in the two-phase flow. This work leads to the development of mixture variables taking into account the presence of non-condensable gases in the fluid. Assumptions are taken to make the system, after using the Reynolds averaging procedure, equivalent to those, using a homogeneous approach, implemented in the unsteady cavitating flows solvers previously developed in the laboratory. The characterization of bubbles made by this post-treatment takes into account both the surface tension and the presence of non-condensable gases. The development of a solver for the simulation of the dynamic of a bubble cloud is started. It aims to take into account both the interactions between bubbles and non-spherical deformations with a potential method. First results of these simulations are presented and small non-spherical deformations occurring during the collapse can be observed. Finally, we propose a chained method between these two systems initializing the bubble dynamic solver with results of U-RANS simulations. The energy emitted during the implosion of bubbles impacting the solid surface is calculated. So the aggressiveness of the flow on the material can be characterized. We apply this method on different flows to compare numerical and experimental results.
3

Zkoušky kavitační eroze kavitujícím paprskem / Cavitation testing using cavitating jet

Rovder, Juraj January 2021 (has links)
This thesis deals with the issue of cavitation and its effects. In this context, it describes the mechanism of origin and implosion of cavities and cavitation regimes. It lists various types of hydrodynamic cavitation. It presents the Rayleight-Plesset equation and describes micro jet. It also highlights cavitation erosion and the effects of cavitation on some types of materials. It deals with three types of cavitation resistance testing, namely cavitation tunnels, a vibrating cavitation system, supported by the ASTM G32 standard, and last but not least, cavitation nozzles, which follow the ASTM G134-17 standard. In correlation with cavitation nozzles, it frames its four basic parameters, which are stand of distance, the cavitation number, the speed of sound and the geometry of the nozzle. At the end of the theoretical part it characterizes the construction of test bench. The practical part is focused on performing the experiment. It first presents the procedure for carrying out the experiment and then evaluates this experiment. Part of the evaluation is the visual observation of selected samples of AlCu4Mg1Mn1 material and the monitoring of cavitation erosion on specific samples. First, these data are processed in the form of graphs and tables. It uses a microscope as a tool for detailed observation of samples. The conclusion of the practical part is devoted to the evaluation of the experiment.
4

Simulation de l'érosion de cavitation par une approche CFD-FEM couplée / Simulation of cavitation erosion by a coupled CFD-FEM approach

Sarkar, Prasanta 05 March 2019 (has links)
Ce travail de recherche est dédié à la compréhension des mécanismes physiques de l’érosion de cavitation dans un fluide compressible à l’échelle fondamentale de l’implosion d’une bulle de cavitation. Suite à l’implosion d’une bulle de vapeur à proximité d’une surface solide, des très hautes pressions sont générées. Ces pressions sont considérées responsables de l’endommagement (érosion) des surfaces solides observé dans la plupart des applications. Notre approche numérique démarre avec le développement d’un solveur compressible capable de résoudre les bulles de cavitation au sein du code volumes finis YALES2 en utilisant un simple modèle de mélange homogène des phases fluides. Le solveur est étendu à une approche ALE (Arbitraire Lagrangien Eulérien) dans le but de mener des simulations d’interaction fluide-structure sur un maillage mobile. La réponse du matériau solide est calculée avec le code de calcul éléments finis Cast3M, et nous a permis de mener des simulation avec un couplage d’abord monodirectionnel, ensuite bidirectionnel, entre le fluide et le solide. On compare des résultats obtenus à deux dimensions, puis à trois, avec des observations expérimentales. On discute les chargements de pression estimés, et les réponses de différents matériaux pour des implosions de bulle à des différentes distances de la surface. Enfin, à travers l’utilisation de simulations avec couplage bidirectionnel entre fluide et solide, on identifie l’amortissement des chargements de pression pour les différents matériaux. / This research is devoted to understanding the physical mechanism of cavitation erosion in compressible liquid flows on the fundamental scale of cavitation bubble collapse. As a consequence of collapsing bubbles near solid wall, high pressure impact loads are generated. These pressure loads are believed to be responsible for the erosive damages on solid surface observed in most applications. Our numerical approach begins with the development of a compressible solver capable of resolving the cavitation bubbles in the finite-volume solver YALES2 employing a simplified homogenous mixture model. The solver is extended to Arbitrary Lagrangian-Eulerian formulation to perform fluid structure interaction simulation with moving mesh capabilities. The material response is resolved with the finite element solver Cast3M, which allowed us to perform one-way and two-way coupled simulations between the fluid and solid domains. In the end, we draw comparisons between 2D and 3D vapor bubble collapse dynamics and compare them with experimental observations. The estimated pressure loads on the solid wall and different responses of materials for attached and detached bubble collapses are discussed. Finally, the damping of pressure loads by different materials is identified with two-way coupled fluid-structure interaction.
5

Analyse et modélisation du comportement de divers matériaux en érosion de cavitation / Modeling and analysis of material behavior during cavitation erosion

Roy, Samir Chandra 11 December 2015 (has links)
A ce jour il n'est toujours pas possible de prédire avec exactitude le phénomène d'érosion par cavitation. La raison principale est qu'il est difficile de caractériser l'agressivité de l'écoulement. Cette thèse propose d'utiliser une méthode inverse pour estimer l'agressivité de l'écoulement à partir de l'observation des cratères (pits) imprimées sur la surface dans les premiers instants de l'érosion de cavitation. Trois matériaux ont été testés dans la veine d'écoulement PREVERO disponible au LEGI de Grenoble dans les mêmes conditions expérimentales. La géométrie des pits laissés sur la surface est précisément mesurée à l'aide d'une méthode systématique permettant de s'affranchir de l'effet de rugosité. Supposant que chaque pit a été généré par une bulle unique dont le champ de pression est assimilé à une forme Gaussienne, des calculs par éléments finis permettent d'estimer le chargement qui a créé l'empreinte résiduelle. On montre que la distribution des chargements suit une loi universelle indépendante du matériau testé; le matériau le plus tendre (alliage d'aluminium) mesurant les plus faibles impacts tandis que le matériau le plus résistant (Acier inoxydable) donne accès aux plus grandes pressions d'impact. On en conclu que le matériau peut être utilisé comme capteur de pression mesurant le niveau d'agressivité de l'écoulement. La méthode inverse repose sur une caractérisation mécanique des matériaux prenant en compte la sensibilité de la contrainte à la vitesse de déformation. On montre que les essais de nanoindentation sont mieux adaptés que les essais de compression pour déterminer les paramètres de la loi de comportement, notamment pour l'alliage d'aluminium pour lequel la microstructure est très hétérogène. Des essais de compression à haute vitesse par barres de Hopkinson complètent la loi de comportement en donnant la sensibilité à la vitesse de déformation. Des simulations prenant en compte la dynamique du chargement montrent que des impacts de fort amplitude mais appliqués sur un temps court ne laissent pas d'empreinte résiduelle si la fréquence est plus élevée que la fréquence naturelle du matériau assimilé à un oscillateur amorti. Un mécanisme d'accumulation dynamique de la déformation plastique pouvant conduire à la rupture par fatigue est proposé. Finalement, la courbe de perte de masse est simulée en appliquant aléatoirement sur un maillage 3D, la population d'impacts estimée par la méthode inverse. / Numerical prediction of cavitation erosion requires the knowledge of flow aggressiveness, both of which have been challenging issues till-date. This thesis proposes to use an inverse method to estimate the aggressiveness of the flow from the observation of the pits printed on the surface in the first moments of the cavitation erosion. Three materials were tested in the same experimental conditions in the cavitation tunnel PREVERO available LEGI Grenoble. The geometry of the pits left on the surface is precisely measured using a systematic method to overcome the roughness effect. Assuming that each pit was generated by a single bubble collapse whose pressure field is treated as a Gaussian shape, finite element calculations are run for estimating the load that created each residual imprint. It is shown that the load distribution falls on a master curve independent of the tested material; the softer material (aluminum alloy) measuring the lowest impacts while the most resistant material (duplex stainless steel) provides access to the largest impact pressures. It is concluded that the material can be used as a pressure sensor measuring the level of aggressiveness of the flow. The inverse method is based on a material characterization taking into account strain rate effects. It is shown that nanoindentation tests are more suitable than compression tests to determine the parameters of the behavior law, particularly for the aluminum alloy for which the microstructure is very heterogeneous. High-speed compression tests with split Hopkinson pressure bars complement the constitutive law giving the sensitivity to the strain rate. Simulations considering the dynamic loading show that impacts of strong amplitude but applied in a short time do not leave any residual pit if the frequency is higher than the natural frequency of the material treated as a damped oscillator. A dynamic mechanism of plastic strain accumulation that could eventually lead to fatigue failure is proposed. Finally, the mass loss curve of cavitation erosion is simulated by applying randomly on a 3D mesh, the impact force population estimated by the inverse method.

Page generated in 0.1481 seconds