Spelling suggestions: "subject:"cavitation hydrodynamique"" "subject:"kavitation hydrodynamique""
1 |
Contribution à la modélisation de phénomènes de frontière libre en mécanique des films mincesMartin, Sébastien Bayada, Guy. Vazquez, Carlos January 2006 (has links)
Thèse doctorat : Mathématiques Appliquées : Villeurbanne, INSA : 2005. / Thèse rédigée en anglais. Introduction en français. Titre provenant de l'écran-titre. Bibliogr. p. [271]-283.
|
2 |
Optical probing of thermodynamic parameters and radical production in cavitating micro-flows / Mesure optique de paramètres thermodynamiques et production de radicaux dans des micro-écoulements cavitantsPodbevsek, Darjan 18 October 2018 (has links)
Une zone de constriction dans un micro-canal fluidique peut générer, si le débit est suffisant, un écoulement bi-phasique. Ceci est l’origine de la cavitation hydrodynamique. Les échanges de chaleur latente générés par l’apparition et l’implosion des bulles impliquent une variabilité importante de la température dans les zones au-delà de la constriction. En ajoutant des sondes de température nanométriques dans le fluide et en utilisant un microscope confocal on peut déterminer la température en un point. Ainsi on a pu établir des cartographies thermiques en 2 et 3 dimensions à l’intérieur d’un écoulement stationnaire bi-phasique. La technique permet en outre d’avoir accès à la quantité de gaz ce qui permet de corréler les gradients de température avec les zones de transitions de phases. Des zones de très forts refroidissements sont observées après la constriction, là où les bulles apparaissent. Par contre on n’observe pas les zones d’échauffement attendu à cause de la condensation. Une méthode complémentaire, moins sensible, utilisant la spectroscopie Raman a aussi été utilisée pour confirmer ce résultat. Par ailleurs une nouvelle classe de matériaux luminescents sensible à la température et la pression a été étudiée. Enfin une étude de la production de radicaux lors de l’implosion des bulles a été menée en utilisant la chimiluminescence du luminol. La technique utilisée par comptage de photons a permis de quantifier cette production et une cartographie de l’émission du luminol a permis d’associer celle-ci avec la zone d’implosion des bulles / A constriction in the microchannel can be used to establish a two-phase flow, when a sufficient liquid flux is introduced. This is known as hydrodynamic cavitation. The latent heat resulting from the growing and collapsing vapor bubbles makes it interesting to observe the temperature conditions in the flow downstream of the constriction. Using fluorescence microscopy, with the addition of temperature sensitive nano probes into the working fluid, we can determine the temperature at a single point, averaged over the integration time. Coupled with a confocal microscope, we were able to produce two and three dimensional temperature maps of the steady state flow in the microchannel by the use of ratiometric intensity measurements. This technic allows us to observe temperature gradients in two-phase flow as well yielding the void fraction information. Areas of substantial cooling are observed downstream the constriction in the two-phase flow, linked to the bubble growth, while heating regions due to condensations are missing. A complementary, yet less sensitive probe-less technique using the inherent Raman scattering signal of the liquid, was used to confirm the findings. A separate study evaluating a new group of luminescent materials for optical temperature and pressure probes is performed and discussed herein. Finally, the luminol chemiluminescent reaction with radicals produced by the cavitating flow, is used to obtain a corresponding photon yield. By counting the photons produced, an estimate on the radical yield can be obtained. Additionally, rudimentary mapping of the chemiluminescence signal allows the localization of the bubble collapse regions
|
Page generated in 0.0897 seconds