Spelling suggestions: "subject:"cavity quantum electrodynamics"" "subject:"eavity quantum electrodynamics""
1 |
Codificação de bits quânticos via eletrodinâmica quântica de cavidades em circuitos / Quantum bit encoding in circuit cavity quantum electrodynamicsSá Neto, Olímpio Pereira de, 1984- 12 April 2009 (has links)
Orientador: Marcos Cesar de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-14T22:41:50Z (GMT). No. of bitstreams: 1
SaNeto_OlimpioPereirade_M.pdf: 2183642 bytes, checksum: 1db9639afd1e7c5b802c3e8608ea049f (MD5)
Previous issue date: 2009 / Resumo: Nesta dissertação de mestrado foi analisada a eficiência de um esquema de codificação específico de bits quânticos em estados de campos eletromagnéticos quânticos em linhas de transmissão coplanares acopladas a um dispositivo supercondutor, o "Átomo Artificial", sob a ação de um banho ôhmico. O objetivo central desta pesquisa é estudar a Eletrodinâmica Quântica de Cavidades, bem como aspectos de implementação de dispositivos para computação quântica. Neste contexto, nossa proposta de pesquisa consiste em estudar um esquema prático de processamento de informação eficiente, explorando recursos físicos de um sistema real / Abstract: In this dissertation we analyse the efficiency of a specific quantum bit encoding in a quantum electromagnetic field state prepared in a coplanar transmission line coupled to a single superconducting device, the "Artificial Atom", under action of external noise sources affecting the efficiency of the device. The central objective is to study the circuit cavity quantum electrodynamics and to propose practical aspects of devices for quantum computation implementation / Mestrado / Física / Mestre em Física
|
2 |
Entanglement Swapping in the Strong Coupling Interaction between the Atoms and the Photonic Crystal MicrocavitiesLay, Chun-feng 06 June 2005 (has links)
The cavity quantum electrodynamics has been applied to investigate the strong coupling interaction dynamics process between the microcavity field and the atom. The high quality cavity is a key to the realization of cavity quantum electrodynamics. Photonic crystal nanocavities are with small mode volumes and large quality factors. Lights are confined within the nanocavity. They can be used for cavity QED experiments of Fabry-Perot cavity. We have provided a realization of a quantum entanglement method for quantum information processing.
In this paper, we discuss the entanglement swapping in the strong coupling process between two level atoms interacting with the photonic crystal microcavities fields of coherent states. We investigate the atomic level population and the entanglement degree of the system. We have found that the atomic maximal entangled state can be transformed into the photonic crystal microcavity maximal coherent entangled state cavity field, whereas the photonic crystal microcavity maximal coherent entangled state cavity field can be transformed into the atomic maximal entangled state.
|
3 |
Coherent strong field interactions between a nanomagnet and a photonic cavitySoykal, Öney Orhunç 01 July 2010 (has links)
Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology.
However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ∼ 1 mm radius with a nanomagnet of ∼ 100 nm radius and ferromagnet resonance frequency of ∼ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
|
4 |
Influência da compressão do campo eletromagnético no emaranhamento atômico para processos de 1 e 2 fótons / Influence of the electromagnetic field squeezing in atomic entanglement for 1 and 2 photons processesMeneguele, Hugo Leonardo de Oliveira 30 August 2007 (has links)
Orientador: Jose Antonio Roversi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-09T22:35:41Z (GMT). No. of bitstreams: 1
Meneguele_HugoLeonardodeOliveira_M.pdf: 4373941 bytes, checksum: 4efca6ce7c6517706ffe61c248036b0c (MD5)
Previous issue date: 2007 / Resumo: Neste trabalho, estudamos o emaranhamento quântico entre dois átomos, que surge quando ambos interagem com o mesmo campo em uma cavidade. A interação é descrita pelo Modelo de Jaynes-Cummings para processos de 1 e 2 f ótons, sendo analisadas as diferenças na dinâmica de emaran-hamento devidas aos processos distintos. A cavidade é preparada em estados comprimidos de 1 e 2 modos, sendo analisada a influência da compressão inicial no emaranhamento atômico obtido, em termos do máximo emaranhamento possível para cada situação, bem como a robustez e persistência do emaranhamento gerado em relação à compressão. Encontramos que a compressão de um modo é, de modo geral, danosa ao emaranhamento, embora também provoque um efeito de deslocamento nos instantes de interção que gera ganhos para instantes de baixo emaranhamento. Processos de 2 f ótons em campos comprimidos de 1 modo fazem com que o emaranhamento se torne mais robusto, sendo mais persistente contra os efeitos redutores da compressão. Para campos comprimidos de 2 modos, a compressão aumenta o emaranhamento entre os modos da cavidade e reduz entre os átomos; estes dois efeitos concorrentes podem ser combinados de forma a gerarem um ganho de emaranhamento atômico para tempos de interação específicos / Abstract: In this work, we studied the quantum entanglement between two atoms, arising from their interactions with the same cavity field. This interaction follows the Jaynes-Cummings Model for 1 and 2 photons processes, being analized the differences in entanglement dynamics due to distinct processes. The cavity is prepared in 1-and 2-modes squeezed states, being analized the initial squeezing¿s influence in the obtained atomic entanglement, in terms of the highest possible entanglement for each situation, as well as the robustness and persistence of the generated entanglement in relation to squeezing. We found that 1 mode squeezing is, generally speaking, harmful to entanglement, although it also causes a displacement effect in the interaction times, which in turn generates gain for low-entanglement moments. 2-photons processes in 1- mode squeezed fields makes more robust entanglement, which is more persistent against reductive effects by squeezing. For 2- modes squeezed fields, squeezing enhances entanglement between the cavity modes and reduces entanglement between atoms; these two competing effects can be combined as to generate a gain in atomic entanglement for specific interaction times / Mestrado / Física / Mestre em Física
|
5 |
Mixed States of Infrared Light and Matter: Electromagnetic Cavities, Metal Surfaces, and Molecular VibrationsErwin, Justin D. January 2021 (has links)
No description available.
|
6 |
Simulação da equação de Dirac em eletrodinâmica quântica de cavidades / Simulation of Dirac equation in cavity quantum electrodynamicsEliceo Cortes Gomez 15 January 2015 (has links)
Neste trabalho apresentamos um protocolo para simular, no contexto da eletrodinâmica quântica de cavidades, a equação de Dirac 2+1 D e 1+1 D para uma partícula relativística livre, de spin ½. Especificamente, tratamos dois sistemas distintos: no primeiro consideramos um átomo de quatro níveis interagindo com dois modos da cavidade e quatro campos clássicos; no segundo, consideramos um átomo de três níveis interagindo com um modo da cavidade e dois campos clássicos. O primeiro sistema foi utilizado para simular a equação de Dirac 2+1 D. Através do segundo sistema mostramos como simular a equação de Dirac 1+1 D. Com esse sistema mostramos como manipular e controlar por meio das forças de acoplamentos dos campos, os valores da velocidade da luz e a energia de repouso da partícula relativística livre de Dirac simulada. Verificamos que a dinâmica de um elétron no formalismo da mecânica quântica relativística pode ser simulada usando experimentos em Eletrodinâmica Quântica de Cavidades. Neste contexto, analisamos o movimento oscilatório inesperado de uma partícula quântica relativística livre conhecido como Zitterbewegung. / In this work we present, in the context of cavity quantum electrodynamics, a protocol for simulating Dirac equation 2+1 and 1+1 for a relativistic free particle with spin ½. Specifically, we deal with two different systems: In the first one we consider a four level atom interacting with two modes of the cavity and four classical fields; In the second system we deal consider a three level atom and interacting with one mode of the cavity and two classical fields. The first system was used to simulate a 2+1 D Dirac equation. With the second system we show how to simulate a 1+1D Dirac equation. With these systems we show how to simulate and control through the field coupling strength, the values of the velocity of light and rest energy of the simulated Dirac´s relativistic free particle. We verify that the dynamics of one electron in the formalism of relativistic quantum mechanics can be simulated using experiments in cavity quantum electrodynamics. In this context, we analyzed the unexpected but known oscillatory movement of a relativistic free quantum particle.
|
7 |
Simulação da equação de Dirac em eletrodinâmica quântica de cavidades / Simulation of Dirac equation in cavity quantum electrodynamicsGomez, Eliceo Cortes 15 January 2015 (has links)
Neste trabalho apresentamos um protocolo para simular, no contexto da eletrodinâmica quântica de cavidades, a equação de Dirac 2+1 D e 1+1 D para uma partícula relativística livre, de spin ½. Especificamente, tratamos dois sistemas distintos: no primeiro consideramos um átomo de quatro níveis interagindo com dois modos da cavidade e quatro campos clássicos; no segundo, consideramos um átomo de três níveis interagindo com um modo da cavidade e dois campos clássicos. O primeiro sistema foi utilizado para simular a equação de Dirac 2+1 D. Através do segundo sistema mostramos como simular a equação de Dirac 1+1 D. Com esse sistema mostramos como manipular e controlar por meio das forças de acoplamentos dos campos, os valores da velocidade da luz e a energia de repouso da partícula relativística livre de Dirac simulada. Verificamos que a dinâmica de um elétron no formalismo da mecânica quântica relativística pode ser simulada usando experimentos em Eletrodinâmica Quântica de Cavidades. Neste contexto, analisamos o movimento oscilatório inesperado de uma partícula quântica relativística livre conhecido como Zitterbewegung. / In this work we present, in the context of cavity quantum electrodynamics, a protocol for simulating Dirac equation 2+1 and 1+1 for a relativistic free particle with spin ½. Specifically, we deal with two different systems: In the first one we consider a four level atom interacting with two modes of the cavity and four classical fields; In the second system we deal consider a three level atom and interacting with one mode of the cavity and two classical fields. The first system was used to simulate a 2+1 D Dirac equation. With the second system we show how to simulate a 1+1D Dirac equation. With these systems we show how to simulate and control through the field coupling strength, the values of the velocity of light and rest energy of the simulated Dirac´s relativistic free particle. We verify that the dynamics of one electron in the formalism of relativistic quantum mechanics can be simulated using experiments in cavity quantum electrodynamics. In this context, we analyzed the unexpected but known oscillatory movement of a relativistic free quantum particle.
|
8 |
Diamond platforms for nanoscale photonics and metrologyShields, Brendan John 04 June 2015 (has links)
Observing and controlling solid state quantum systems is an area of intense research in quantum science today. Such systems offer the natural advantage of being bound into a solid device, eliminating the need for laser cooling and trapping of atoms in free space. These solid state "atoms" can interface directly with photonic channels designed to efficiently couple into larger networks of interacting quantum systems. With all of the tools of semiconductor fabrication technology available, the idea of scalable, chip-based quantum networks is a tantalizing prospect. / Physics
|
9 |
Ultra-small open access microcavities for enhancement of the light-matter interactionDolan, Philip R. January 2012 (has links)
The design, construction and characterisation of a novel, arrayed, open-access optical microcavity is described. Included in this thesis are the precise fabrication details, making use of the focused ion beam. A technique for analysing and optimising the microcavities constructed, making use of an atomic force microscope is also included. Results from the optical characterisation of the fabricated microcavities are presented, including quality factors of around 104, and fitnesses of around 400. The optical analysis then progressed onto coupling colloidal semiconductor nanocrystals to the microcavity modes. This yielded room temperature Purcell enhancements, single particle sensing, and also allowed for the characterisation of a second iteration of cavities. This improved set was shown to achieve fitnesses in excess of 1800 and quality factors with a lower limit of 15000. The optical identification of single NV centres in nanodiamond is discussed, along with the development of an optical apparatus to couple them to microcavities at cryogenic temperatures. Finally several results from finite difference time domain simulations will be presented, showing ultimate mode volumes of less than 0.5 cubic wavelengths are possible for this approach.
|
10 |
Tomografia de estados quânticos via Stern-Gerlach óptico de cavidades cruzadas / Quantum state tomography via optical Stern-Gerlach of crossed cavitiesMaximo, Carlos Eduardo 22 July 2013 (has links)
No presente trabalho, buscou-se generalizar o Stern-Gerlach óptico para o caso de duas cavidades, as quais possuem eixos ópticos perpendiculares entre si. Nesse experimento, um pacote atomico de dois níveis incide em uma pequena fração do volume ocupado por dois modos, na região onde os nodos das ondas estacionárias de cada modo se superpõem. Diferentemente do Stern-Gerlach óptico de cavidade única, além do intercâmbio de fótons efetuado entre o átomo e cada modo separadamente, também ocorre interação modo-modo, mediada indiretamente pelo átomo. Esse fator contribui efetivamente na caracterização da distribuição de momento do átomo. Espera-se que os desvios de trajetória sofridos pelo átomo, decorrentes de sua interação simultânea com dois modos idênticos do campo de radiação, devam ser observados no plano definido pelas duas cavidades. O estudo é efetuado considerando-se o tratamento clássico da posição do centro de massa atômico, que está associado à sua direção de incidência. Além do que, considera-se a aproximação de Raman-Nath, na qual despreza-se a variação da energia cinética transversal ao movimento atômico, durante a interação átomo-modos. Verifica-se que a análise da distribuição de momento atômico transversal permite acessar a estatística de fótons dos modos das cavidades. Este resultado viabiliza a realização da tomografia dos estados de dois modos por meio da medida da distribuição de momento bidimensional dos átomos. Por fim, através da utilização de estados coerentes na configuração de cavidades cruzadas, investiga-se as possibilidades do controle da direção de deflexão do átomo para aplicações em litografia puramente quântica. / This work deals with the generalization of the optical Stern-Gerlach effect for two cavities whose optical axes are perpendicular to each other. An atomic wave of a two-level atom is focused on a small fraction of the volume occupied by the two modes, in the region where the standing waves nodes overlap. Unlike the optical Stern-Gerlach of single cavity, besides the separate photon exchange between an atom and each mode, there also occurs mode-mode interaction indirectly mediated by the atom. This fact contributes towards the characterization of the atomic momentum distribution. Trajectory deviations suffered by the atom due to its simultaneous interaction with the two identical modes of the radiation field are expected in the plane defined by the two cavities. The study is carried out considering the classical treatment of the atomic center of mass position, which is associated with its incidence direction. The Raman-Nath approximation, which neglects the variation in the kinetic energy transversal to the atomic motion during the interaction atom-modes is considered. The analysis of the transversal momentum distribution of the atom allows accessing the photon statistics of the cavities modes. This result enables the realization of the two-mode states tomography via measurement of the two-dimensional momentum distribution of the atom. Finally, by using coherent states of the crossed cavities configuration, the study investigates the possibilities of controlling the atomic deflection direction for applications to quantum lithography.
|
Page generated in 0.0734 seconds